MREC ENVIRONMENTAL,LLC

3036 Pritchard rd. MARRERO, LA 70072



MARINE RESEARCH ECOLOGICAL CONSULTING GABRIEL JOHNSON OLDEB CERTIFIED BIOLOGIST

*VOICE* # (504) 432-3107

### ESCAMBIA BAY & PENSACOLA BAY SUBTIDAL OYSTER REEF MAPPING & ASSESSMENT



*Located in* Escambia Bay & Pensacola Bay Escambia County Florida

**Prepared for** Pensacola and Perdido Bays Estuary Program

> Prepared by Gabriel Johnson OLDEB Certified Oyster Biologist MREC Environmental, LLC

> > 2021

Hydrographic Surveying & Mapping • Environmental Services • Geographic Information Systems

# <u>CONTENTS</u>

| INTRODUCTION                           | 1  |
|----------------------------------------|----|
| MATERIALS AND METHODS                  | 2  |
| Survey Platform                        |    |
| Bathymetric Data                       | 2  |
| Water Quality Data                     |    |
| Side Scan Sonar Imagery                |    |
| Poling Data/Ground Truthing            |    |
| Water Bottom Substrate Classifications | 4  |
| Oyster Square Meter Quadrant Samples   |    |
| RESULTS                                | 6  |
| Study Overview                         | 6  |
| Area E1                                |    |
| Area E2                                |    |
| Area E3                                |    |
| Area E4                                |    |
| Area E5                                |    |
| Area E6                                |    |
| Area E7                                |    |
| Area E8                                |    |
| Area E9                                |    |
| Area E10                               |    |
| Area E11                               |    |
| Area E12                               |    |
| Area E13                               |    |
| Area E14                               |    |
| Area E15                               |    |
| Area E16                               |    |
| Area E17                               |    |
| Area E18                               | 61 |

| Area E19                                    | 64 |
|---------------------------------------------|----|
| Area E20                                    | 67 |
| Area E21                                    | 70 |
| Area E22                                    | 73 |
| Area E23                                    | 76 |
| Area E24                                    | 79 |
| Area E25                                    | 82 |
| Area E26                                    | 85 |
| Area E27                                    | 88 |
| Area E28                                    | 91 |
| Area E29                                    | 94 |
| Area E30                                    | 97 |
| DISCUSSION10                                | 00 |
| Substrata10                                 | 00 |
| Reef Quality10                              | 00 |
| Standing Stock 10                           | 01 |
| Water Quality10                             | 01 |
| Appendix A - Sample Data                    | 04 |
| GULF COAST OYSTER REEF ORGANISM FIELD GUIDE | 79 |
| GLOSSARY OF ACRONYMS1                       | 84 |
| REFERENCES1                                 | 85 |

## INTRODUCTION

Over the past century, there has been an estimated 85% global loss of native oyster reef habitats due to habitat degradation, over-harvesting, reduced water quality, disease, boat wakes, and other factors (Beck 2011). According to Beck et al. (2011 a significant data gap has been identified as result of a lack of current data on the extent and condition of oyster habitats; data which is essential for monitoring oyster population health and key in guiding restoration and resource management efforts. The decline in oyster habitats and lack of accurate population data extends to many of Florida's estuaries and bay systems in the Gulf of Mexico, including the Pensacoloa Bay System (PBS).

Escambia Bay is an intertidal and subtidal body of water located in Escambia County, FL. It is situated just north and proximal to Pensacola Bay in th PBS. Over the last few decades and following the Deepwater Horizon oil spill, oyster production has significantly declined. It is unclear whether or not any of the reefs within the PBS contain live oysters, and if so in what quantities and sizes. To help reach the long-term goal of conserving, restoring, and managing oyster habitats in the PBS, Escambia County, The Pensacola and Perdido Bays and Estuary Program, in coordination with the state and community stakeholders, and The Nature Conservancy (TNC) created a bay-scale recovery plan: the *Oyster Fisheries and Habitat Management Plan for the Pensacola Bay System* (Birch 2021). The plan provides guidance for recovery goals to help ensure that oysters thrive as a habitat and a fishery throughout the PBS.

An essential element of the plan is an oyster habitat suitability model (HSM), which helps identify the best places for oyster reef restoration. Escambia County, contracted MREC Environmental LLC (MREC) in April of 2021 to conduct a mapping and condition analysis of oyster reefs in the PBS, utilizing funding appropriated by the State of Florida legislature for the Pensacola and Perdido Bays Estuary Program in Escambia County, as well as funding granted by the RESTORE Act Direct Component funding granted by the Deepwater Horizon compensation funds. Mapping the remnant and restored oyster reefs establishes a comprehensive baseline of the oyster resources in the PBS and provides the foundation of information necessary to develop comprehensive oyster habitat restoration and management objectives. The collection of marine organisms, including all oyster sampling performed by MREC for this study was conducted under the Florida Fish and Wildlife Conservation Commission, FWC Special Activities License #SAL-20-2243A-SR.

## MATERIALS AND METHODS

The hydrographic survey, quadrant oyster sampling as well as the analysis and processing of all data for this subtidal mapping and assessment report has been completed by a MREC Environmental crew lead by senior oyster biologist Gabe Johnson. Aerial GIS maps were created by Suzanne Beasley, senior GIS analyst at Custom Mapping Services.

The water bottom/oyster resource assessment was conducted in Escambia Bay, an intertidal and subtital body of water just north of Pensacola Bay, in Escambia County, FL. The bay, measuring just over 20.1k acres in area, was subsampled into 30 individual study areas. The areas were previously identified as oyster bearing either by Florida Fish and Wildlife Commission (FWC) or local watermen, or were found via satellite imagery as possible oyster reefs or oyster bearing substrates.

### Survey Platform

A 30ft. custom aluminum, outboard motor propelled research vessel with a  $\sim$  1.5 ft. draft, was used to collect data and survey the study area. Bathymetric, side scan-sonar, and navigation data

as well as water quality, and square meter oyster samples were all collected from this vessel. Navigation data was performed using a Trimble MPS865 marine GNSS receiver, with dual Trimble GA 830 antennas, and operated using both Hypack® software running and Chesapeake Technology Inc.'s Sonar Wiz 7 software running on a DELL Rugged computer and a Panasonic Toughbook computer.



### <u>Bathymetric Data</u>

Aboard the research vessel, an Odom CV-100 single-beam sounder was used to collect bathymetric data along survey track lines spaced ~ 100 ft. apart. The instrument was mounted on a rigid pole on the side of the vessel, deployed 2ft. below the water surface, and properly calibrated. Top of water elevations were calculated using the Mean Lower Low Water (MLLW) reading of the NOAA tide gauge station at Lora Point, Escambia Bay, FL Station ID: 8729816. Single-beam bathymetry was derived from chirp profiles collected. This data was used to create a bathymetric model that provided contour coverage of the area through interpolation.

### Water Quality Data

Using a YSI Pro 2030 handheld meter, salinity, and water temperature data was collected at the top of the water column (approximately 18 inches below the surface). Salinity, water temperature, and dissolved oxygen (DO) was collected near the water bottom (approximately 6" above the substrate).

### <u>Side Scan Sonar Imagery</u>

Acoustic backscatter data was collected using Edgetech 4125 side scan-sonar systems, towed alongside the vessel  $\sim$  3 ft. below the surface. Track lines were spaced 200ft. apart, and the side



scan swath was 150 ft. to each side of the track. Post collection processing of the data was completed using Chesapeake Technology Inc.'s "Sonar Wiz 7," software.

Backscatter intensity, as recorded with side scan sonar, is an acoustic measure of variations in the physical properties of the sea floor. Side scan-sonar imagery was processed such that high backscatter (relatively strong acoustic returns) is represented by white, and low backscatter

(relatively weak acoustic returns) is represented by black. In Escambia Bay, backscatter variability is generally caused by shell material on the seafloor. Due to the low incidence angles associated with towed systems, topographic highs and lows can be interpreted based on acoustic shadows. Poling, as well as oyster dredge samples, and square meter dive samples were all used as a means of ground truthing the sonar results. ArcGIS 10.2.2 was used for mapping the imagery collected within the survey area.

### **Poling Data/Ground Truthing**

Field investigations to ground truth the bottom type characteristics observed in the side scan sonar observations were conducted during the survey. Point of Interest (POI) poling spot checks were run across the study area. The boat was guided along these transects at speeds no greater than 4.0 knots, while an investigator stood on the side of the vessel and systematically poled the water bottom using an aluminum sounding pole. The water bottoms were probed noting water bottom features.

### Water Bottom Substrate Classifications

Water bottoms were classified according to the following charachterizations: Soft mud/sand - where the bottom is dominantly soft, slushy mud which would not support small pieces of cultch material; moderately firm mud/sand - where the bottom would support small pieces of cultch material; sand - where the bottom is dominantly compact sandy substrate; buried shell - where shells are buried under soft sediment; exposed shell - where the bottom is dominantly loose or scattered oyster shell material or hard substrate such as clam shells, limestone or concrete aggregate; reef - where the bottom is dominantly clustered or aggregated oyster shells or hard substrates like clam shells, limestone or concrete aggregate.



### **Oyster Square Meter Quadrant Samples**

Three (3) square meter samples per sample set were collected by a scuba diver in each survey location where reef and/or shell observations were recorded. The number of sample sets were determined by acerage and spacing of found oyster reef complexes. As previously stated all marine organisms collected during this quadrant sampling were collected under FWC Special Acivities License# SAL-20-2243A-SR. The scuba diver placed a square meter aluminum frame over the shell material on the water bottom for each sample. All surface materials (6" depth) within the frame were removed from the bottom, placed into a metal basket and brought to the boat. The materials were photographed, labeled and placed into plastic bags for later analysis. Once back to the research lab the live oysters and oyster boxes were measured, counted and observations were made on their conditions. The square meter quadrat (SQM) oyster samples were collected to determine overall oyster mortalities on the reefs in the survey area, spatial distribution of any oysters in the area, and an estimation of the quantities of oysters, shells, or other shellfish in the area. The live oysters were totaled for the three main size categories: Spat

(1-25 mm), Seed (26-75 mm), and Market (76 mm+), and using an estimated mortality discounting method (180 oysters/sack, spat by 90%, and seed by 50% for potential crop), the total sacks per acre were calculated for each toss/sample according to the following formula:

$$\frac{Sacks}{Acre} = (\left(\frac{Market}{m2}\right) + 0.1\left(\frac{Spat}{m2}\right) + 0.5\left(\frac{Seed}{m2}\right)) * \frac{4047m2}{acres} * \frac{1sack}{180 oysters}$$

### <u>RESULTS</u>

#### Study Overview

The Escambia Bay assessment covered a total of 4,050.7 acres in 30 study areas. Forty percent of the study areas contained exposed shell, and only 30% of the study areas contained exposed reef (9 of 30 areas) (Figure 1 and Table A), resulting in 190.3 acres of reef and 45.7 acres of exposed shell (Table B). The present reef is found within the depth ranges of 6.00ft-10.0ft. The reef and shell areas were often surrounded by soft/mud sand and/or moderately firm mud/sand. Of the exposed shell, 78% was found in the eastern portion of the bay, and of the reef, 96% was found in the eastern portion of the bay. Live oysters were found in 5 of the 9 areas where samples were performed. Individual sample data can be found in Appendix A.



Figure 1. The 30 study areas in Escambia Bay, including found reef and sample site locations.

| Area                                                                                                                 | Sample Area 1             |              |              | Sample Area 2        |              |              |  |
|----------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|--------------|----------------------|--------------|--------------|--|
|                                                                                                                      | Location Coordinates      |              | Date sampled | Location Coordinates |              | Date sampled |  |
| E2                                                                                                                   | N 30°27.472' W 87°06.586' |              | 7/19/2021    |                      |              |              |  |
| E3                                                                                                                   | N 30°27.991'              | W 87°06.072' | 7/19/2021    |                      |              |              |  |
| E6                                                                                                                   | N 30°28.678               | W 87°06.337  | 7/19/2021    |                      |              |              |  |
| E7                                                                                                                   | N 30°28.920'              | W 87°06.898' | 7/21/2021    |                      |              |              |  |
| E8                                                                                                                   | N 30°29.986'              | W 87°06.509' | 7/21/2021    |                      |              |              |  |
| E9                                                                                                                   | N 30°29.771'              | W 87°07.070' | 7/27/2021    | N 30°29.779'         | W 87°06.823' | 7/28/2021    |  |
| E15                                                                                                                  | N 30°30.119'              | W 87°06.258' | 7/21/2021    | N 30°30.324'         | W 87°06.526' | 7/28/2021    |  |
| E16                                                                                                                  | N 30°30.369'              | W 87°06.878' | 7/27/2021    | N 30°30.435'         | W 87°06.797' | 7/28/2021    |  |
| E17                                                                                                                  | N 30°31.034'              | W 87°06.679' | 7/27/2021    |                      |              |              |  |
| E18                                                                                                                  | N 30°30.997'              | W 87°07.100' | 7/27/2021    |                      |              |              |  |
| E19                                                                                                                  | N 30°30.825'              | W 87°07.532' | 7/27/2021    | N 30°30.573'         | W 87°07.409' | 7/27/2021    |  |
| E21                                                                                                                  | N 30°32.448'              | W 87°08.808' | 7/27/2021    | N 30°32.448'         | W 87°08.810' | 7/27/2021    |  |
| E25                                                                                                                  | N 30°29.511'              | W 87°08.499' | 7/28/2021    |                      |              |              |  |
| E27                                                                                                                  | N 30°29.009'              | W 87°08.825' | 7/28/2021    |                      |              |              |  |
| E28                                                                                                                  | N 30°29.023'              | W 87°09.441' | 7/28/2021    |                      |              |              |  |
| E29                                                                                                                  | N 30°28.547'              | W 87 08.713' | 7/28/2021    |                      |              |              |  |
| E30                                                                                                                  | N 30°28.365'              | W 87°09.143' | 7/28/2021    |                      |              |              |  |
| <b>Table A.</b> Dive sample locations and dates. Those highlighted in yellow had live and/or dead oysters in sample. |                           |              |              |                      |              |              |  |

|                                                                                                                 | Oyster Bearing Substrates (Acres) |       |       | Density      | Mortality | Total Sacks    |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------|-------|-------|--------------|-----------|----------------|
| Area                                                                                                            | Exposed Shell                     | Reef  | Total | (Sacks/Acre) | (Total)   | (180 oys/sack) |
| E3                                                                                                              | 0.9                               | 29.7  | 30.6  | 29.2         | 10%       | 894            |
| E7                                                                                                              | 6.7                               | 51.1  | 57.8  | 0.0          | 100%      | 0              |
| E8                                                                                                              | 13.4                              | 50.8  | 64.2  | 246.5        | 16%       | 15827          |
| E9                                                                                                              | 1.5                               | 26.7  | 28.2  | 6.7          | 0%        | 190            |
| E15                                                                                                             | 3.6                               | 5.7   | 9.3   | 0.0          | 100%      | 0              |
| E16                                                                                                             | 2.8                               | 10.5  | 13.3  | 0.0          | 0%        | 0              |
| E17                                                                                                             | 6.9                               | 8.4   | 15.3  | 40.5         | 24%       | 619            |
| E27                                                                                                             | 6.4                               | 6.5   | 12.9  | 0.0          | 100%      | 0              |
| E28                                                                                                             | 3.5                               | 0.9   | 4.4   | 7.5          | 88%       | 33             |
| Total                                                                                                           | 45.7                              | 190.3 | 236   |              |           | 17564          |
|                                                                                                                 | 1                                 | I     | Mean  | 36.7         |           |                |
| Table P. A groups of shall and react in the study areas where overar samples were performed, as well as density |                                   |       |       |              |           |                |

**Table B.** Acreage of shell and reef in the study areas where oyster samples were performed, as well as density of live oysters, total mortality, and estimated sacks for the entire study area.

Water quality data (Table C) at the bottom was collected across 21 of 30 sites. Water bottoms at the collection areas averaged at 9.2 ft in depth, data was collected at the top of the water column (approximately 18 inches below the surface) and near the water bottom (approximately 6" above the substrate). The average dissolved oxygen in these areas near the water bottom were 5.31 mg/L. Surface salinity was on average 3.2 ppt with average bottom salinity at 4.5 ppt. Surface temperature averaged 30.2°C, while bottom temperature averaged 30.1°C. Bathymetry for all 30 study areas are shown in Figure 2.

| A #20                                                               | Surface        | Bottom         | Surface   | Bottom temp | DO2    | Depth |  |  |
|---------------------------------------------------------------------|----------------|----------------|-----------|-------------|--------|-------|--|--|
| Alea                                                                | Salinity (ppt) | salinity (ppt) | Temp (°C) | (°C)        | (mg/L) | (ft.) |  |  |
| E2                                                                  | 6.2            | 6.8            | 30.9      | 30.6        | 5.21   | 11.6  |  |  |
| E3                                                                  | 6              | 7              | 30.8      | 30.3        | 5.95   | 8.2   |  |  |
| E7                                                                  | 5              | 6.2            | 30.6      | 30.3        | 6.87   | 11.1  |  |  |
| E8                                                                  | 4.2            | 5.7            | 31        | 30.5        | 5.99   | 9.4   |  |  |
| E10                                                                 | 2.3            | 4.7            | 29.5      | 29.4        | 5.81   | 10.9  |  |  |
| E11                                                                 | 2.5            | 4.2            | 30.1      | 29.8        | 5.07   | 9     |  |  |
| E12                                                                 | 1.4            | 3.3            | 29.5      | 29.4        | 4.21   | 9.3   |  |  |
| E13                                                                 | 1.1            | 2.5            | 28.9      | 29.8        | 5.28   | 9.4   |  |  |
| E15                                                                 | 5.3            | 7.6            | 31        | 30.9        | 4.02   | 9.7   |  |  |
| E16                                                                 | 4.3            | 5.8            | 31.2      | 30.4        | 6.57   | 8.8   |  |  |
| E17                                                                 | 4.5            | 6              | 31.3      | 30.8        | 5.7    | 8.5   |  |  |
| E18                                                                 | 4.4            | 4.8            | 30.8      | 30.5        | 6.02   | 9     |  |  |
| E19                                                                 | 3.1            | 5.1            | 30.4      | 30.4        | 6.27   | 9     |  |  |
| E20                                                                 | 1.1            | 2              | 29.5      | 29.4        | 4.52   | 13.5  |  |  |
| E21                                                                 | 1.5            | 3.4            | 30.2      | 30.4        | 2.9    | 8.1   |  |  |
| E22                                                                 | 1.7            | 1.7            | 30.5      | 30.6        | 6.81   | 6.7   |  |  |
| E23                                                                 | 0.8            | 3.3            | 29        | 29.2        | 2.27   | 7.9   |  |  |
| E26                                                                 | 2.1            | 2.5            | 29.7      | 29.7        | 5.57   | 6.9   |  |  |
| E27                                                                 | 3.1            | 4              | 29.8      | 29.8        | 5.56   | 8.7   |  |  |
| E28                                                                 | 3.9            | 3.9            | 29.8      | 29.8        | 5.4    | 7.9   |  |  |
| E30                                                                 | 3.2            | 3.7            | 29.7      | 29.6        | 5.55   | 9.8   |  |  |
| Mean                                                                | 3.2            | 4.5            | 30.2      | 30.1        | 5.31   | 9.2   |  |  |
| <b>Table C.</b> Water quality analysis at 21 of the 30 study areas. |                |                |           |             |        |       |  |  |





### <u>Area E1</u>

Area E1, consisted of 29.1 acres total in study with water depth ranges between 3.0ft – 6.0ft. The different bottom types present within the study area included 1.8 acres of moderately firm mud/sand, and 27.3 acres of sand. There was no reef found within the study area. Bottom type composition, sidescan imagery, and bathymetry are shown in Figures 3, 4, and 5, respectively.





Figure 4. Sidescan imagery of area E1.



Figure 5. Bathymetry of area E1.

### Area E2

Area E2 consisted of 194.9 acres total in study with water depth ranges between 6.5ft – 13.0ft. The different bottom types present within the study area included 48.5 acres of soft mud/sand, 2.10 acres of buried shell, 89.4 acres of moderately firm mud/sand, 0.20 acres of exposed oyster shell, and 54.6 acres of sand. There was no reef found within the study area. Dissolved oxygen reading was 5.21 mg/L. Surface salinity was 6.2 ppt, while bottom salinity was 6.8 ppt. Surface temperature was 30.9°C, while bottom temperature was 30.6°C. Bottom type composition and bathymetry are shown in Figures 6, 7, and 8, respectively.





Figure 7. Sidescan imagery of area E2.



Figure 8. Bathymetry of area E2.

### <u>Area E3</u>

Area E3 consisted of 165.4 acres total in study with water depth ranges between 3.0ft - 11.5ft. The different bottom types present within the study area included 21.9 acres of soft mud/sand, 1.20 acres of buried shell, 46.0 acres of moderately firm mud/sand, 0.90 acres of exposed oyster shell, 65.7 acres of sand, and 29.7 acres of reef. Reef was relatively at level with surrounding soft/mud sand with a vertical relief of about 0in.-6in. The reef consisted of limestone and fragmented cultch material which held both live and dead spat. All shells obtained were gray in color. Reef organisms found in samples included barnacles, oyster drills, hermit crabs, mud crabs, and mussels. Dissolved oxygen reading was 5.95 mg/L. Surface salinity was 6.0 ppt, while bottom salinity was 7.0 ppt. Surface temperature was 30.8°C, while bottom temperature was 30.3°C. Bottom type composition and bathymetry are shown in Figures 9, 10, and 11, respectively.







Figure 11. Bathymetry of area E3.

### <u>Area E4</u>

Area E4 consisted of 29.1 acres total in study with water depth ranges between 10.5ft – 11.0ft. The different bottom types present within the study area included 9.3 acres of soft mud/sand, and 19.8 acres of moderately firm mud/sand. There was no reef found within the study area. Bottom type composition, sidescan imagery, and bathymetry are shown in Figures 12, 13, and 14, respectively.





Figure 13. Sidescan imagery of area E4.



Figure 14. Bathymetry of area E4.

### <u>Area E5</u>

Area E5 consisted of 29.1 acres total in study with water depth ranges between 9.5ft – 10.5ft. The different bottom types present within the study area included 12.1 acres of soft mud/sand, and 17.0 acres of moderately firm mud/sand. There was no reef found within the study area. Bottom substrate type, sidescan imagery, and bathymetry are shown in Figures 15, 16, and 17 respectively.





Figure 16. Sidescan imagery of area E5.



Figure 17. Bathymetry of area E5.

### <u>Area E6</u>

Area E6 consisted of 29.1 acres total in study with water depth ranges between 8.0ft – 9.5ft. The different bottom types present within the study area included 10.6 acres of soft mud/sand, 0.40 acres of buried shell, and 18.1 acres of moderately firm mud/sand. There was no reef found within the study area. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 18, 19 and 20, respectively.





Figure 19. Sidescan imagery of area E6.



Figure 20. Bathymetry of area E6.

### Area E7

Area E7 consisted of 227.3 acres total in study with water depth ranges between 6.5ft - 11.0ft. The different bottom types present within the study area included 109.2 acres of soft mud/sand, 13.5 acres of buried shell, 46.4 acres of moderately firm mud/sand, 6.70 acres of exposed oyster shell, and 51.1 acres of reef. Reef was surrounded by soft/mud sand and moderately firm mud/sand with a vertical relief of up to a foot or higher. The reef consisted of fragmented cultch material which held old dead spat, seed, and sack. All shells obtained were gray in color. Reef organisms found in samples included oyster drills. Dissolved oxygen reading was 6.87 mg/L. Surface salinity was 5.0 ppt, while bottom salinity was 6.2 ppt. Surface temperature was 30.6°C, while bottom temperature was 30.3°C. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 21, 22, and 23, respectively.







Figure 23. Bathymetry of area E7.

#### <u>Area E8</u>

Area E8 consisted of 300.1 acres total in study with water depth ranges between 6.0ft - 10.5ft. The different bottom types present within the study area included 100.1 acres of soft mud/sand, 25.6 acres of buried shell, 110.2 acres of moderately firm mud/sand, 13.4 acres of exposed oyster shell, and 50.8 acres of reef. Reef was surrounded by soft/mud sand and moderately firm mud/sand with a vertical relief of up to a foot or higher. The reef consisted of limestone and fragmented cultch material which held both live and old dead spat, seed, and sack. Shells obtained in sample one were 40% brown and 60% gray in color. Samples two and three shells were 10% brown and 90% gray. Reef organisms found in samples included barnacles, oyster drills, and mussels. Dissolved oxygen reading was 5.99 mg/L. Surface salinity was 4.2 ppt, while bottom salinity was 5.7 ppt. Surface temperature was 31.0°C, while bottom temperature was 30.5°C. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 24, 25, and 26, respectively.







Figure 26. Bathymetry of area E8.
#### <u>Area E9</u>

Area E9 consisted of 97.9 acres total in study with water depth ranges between 6.5ft - 11.5ft. The different bottom types present within the study area included 50.4 acres of soft mud/sand, 5.70 acres of buried shell, 13.9 acres of moderately firm mud/sand, 1.50 acres of exposed oyster shell, and 26.7 acres of reef. Reef was surrounded by soft/mud sand and moderately firm mud/sand with a vertical relief of up to a foot or higher. The reef consisted of fragmented cultch material which held live spat. Shells obtained in sample one were 5% brown-green, 10% brown, and 85% gray. Samples two and three shells were 10% brown and 90% gray. Reef organisms found in samples included barnacles, oyster drills, and mussels. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 27, 28, and 29, respectively.







Figure 29. Bathymetry for area E9.

### <u>Area E10</u>

Area E10 consisted of 29.1 acres total in study with water depth ranges between 8.5ft – 10.5ft. The different bottom types present within the study area included 22.6 acres of soft mud/sand, and 6.50 acres of moderately firm mud/sand. There was no reef found within the study area. Dissolved oxygen reading was 5.81 mg/L. Surface salinity was 2.3 ppt, while bottom salinity was 4.7 ppt. Surface temperature was 29.5°C, while bottom temperature was 29.4°C. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 30, 31, and 32, respectively.





Figure 31. Sidescan imagery of area E10.



Figure 32. Bathymetry of area E10.

## <u>Area E11</u>

Area E11 consisted of 29.1 acres total in study with water depth ranges between 8.0ft – 10.0ft. The different bottom types present within the study area included 22.4 acres of soft mud/sand, 0.60 acres of buried shell, and 6.10 acres of moderately firm mud/sand. There was no reef found within the study area. Dissolved oxygen reading was 5.07 mg/L. Surface salinity was 2.5 ppt, while bottom salinity was 4.2 ppt. Surface temperature was 30.1°C, while bottom temperature was 29.8°C. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 33, 34, and 35, respectively.





Figure 34. Sidescan imagery of area E11



Figure 35. Bathymetry of area E11.

## Area E12

Area E12 consisted of 29.1 acres total in study with water depth ranges between 7.5ft – 9.5ft. The different bottom types present within the study area included 18.0 acres of soft mud/sand, 2.40 acres of buried shell, and 8.70 acres of moderately firm mud/sand. There was no reef found within the study area. Dissolved oxygen reading was 4.21 mg/L. Surface salinity was 1.4 ppt, while bottom salinity was 3.3 ppt. Surface temperature was 29.5°C, while bottom temperature was 29.4°C. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 36, 37, and 38, respectively.





Figure 37. Sidescan imagery of area E12.



Figure 38. Bathymetry of area E12.

### <u>Area E13</u>

Area E13 consisted of 28.3 acres total in study with water depth ranges between 8.0ft – 8.5ft. The different bottom types present within the study area included 24.7 acres of soft mud/sand, 1.30 acres of buried shell, and 2.30 acres of moderately firm mud/sand. There was no reef found within the study area. Dissolved oxygen reading was 5.28 mg/L. Surface salinity was 1.1 ppt, while bottom salinity was 2.5 ppt. Surface temperature was 28.9°C, while bottom temperature was 29.8°C. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 39, 40, and 41, respectively.







Figure 41. Bathymetry of area E13.

# Area E14

Area E14 consisted of 26.9 acres total in study with water depth ranges between 2.0ft – 4.5ft. The different bottom types present within the study area included 0.50 acres of moderately firm mud/sand, and 26.4 acres of sand. There was no reef found within the study area. Dissolved oxygen reading was 4.02mg/L. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 42, 43, and 44, respectively.





Figure 43. Sidescan imagery of area E14.



Figure 44. Bathymetry of area E14.

## Area E15

Area E15 consisted of 74.1 acres total in study with water depth ranges between 6.0ft - 9.5ft. The different bottom types present within the study area included 34.7 acres of soft mud/sand, 6.00 acres of buried shell, 24.1 acres of moderately firm mud/sand, 3.60 acres of exposed oyster shell, and 5.70 acres of reef. Reef was relatively at level with surrounding soft/mud sand and moderately firm mud/sand with a vertical relief of about 0in.-6in. The reef consisted of fragmented cultch material which held old dead seed and sack. All shells obtained were gray in color. No reef organisms were found in the samples collected. Dissolved oxygen reading was 4.02mg/L. Surface salinity was 5.3 ppt, while bottom salinity was 7.6 ppt. Surface temperature was 31.0°C, while bottom temperature was 30.9°C. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 45, 46, and 47, respectively.







Figure 47. Bathymetry of area E15.

#### <u>Area E16</u>

Area E16 consisted of 243.9 acres total in study with water depth ranges between 6.5ft – 9.0ft. The different bottom types present within the study area included 140.7 acres of soft mud/sand, 11.2 acres of buried shell, 78.7 acres of moderately firm mud/sand, 2.80 acres of exposed oyster shell, and 10.5 acres of reef. Reef was relatively at level with surrounding soft/mud sand with a vertical relief of about 0in.-6in. The reef consisted of fragmented cultch material which showed no live or dead spat, seed, or sack. All shells obtained were gray in color. Reef organisms found in samples included barnacles and mussels. Dissolved oxygen reading was 6.57 mg/L. Surface salinity was 4.3 ppt, while bottom salinity was 5.8 ppt. Surface temperature was 31.2°C, while bottom temperature was 30.4°C. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 48, 49, and 50, respectively.







## Area E17

Area E17 consisted of 93.6 acres total in study with water depth ranges between 6.5ft - 8.5ft. The different bottom types present within the study area included 41.9 acres of soft mud/sand, 10.6 acres of buried shell, 25.8 acres of moderately firm mud/sand, 6.90 acres of exposed oyster shell, and 8.40 acres of reef. Reef was relatively at level with surrounding soft/mud sand with a vertical relief of about 0in.-6in. The reef consisted of limestone and fragmented cultch material which held live spat, seed, and sack, as well as old dead spat and seed. Shells obtained in sample one were 5% brown and 95% gray. All shells found in samples two and three were gray. Reef organisms found in samples included barnacles and mussels. Dissolved oxygen reading was 5.7 mg/L. Surface salinity was 4.5 ppt, while bottom salinity was 6.0 ppt. Surface temperature was 31.3°C, while bottom temperature was 30.8°C. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 51, 52, and 53, respectively.







Figure 53. Bathymetry of area E17.

### <u>Area E18</u>

Area E18 consisted of 29.1 acres total in study with water depth ranges between 7.0ft – 8.5ft. The different bottom types present within the study area included 17.1 acres of soft mud/sand, 1.30 acres of buried shell, 8.70 acres of moderately firm mud/sand, and 2.00 acres of sand. There was no reef found within the study area. Dissolved oxygen reading was 6.02 mg/L. Surface salinity was 4.4 ppt, while bottom salinity was 4.8 ppt. Surface temperature was 30.8°C, while bottom temperature was 30.5°C. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 54, 55, and 56, respectively.





Figure 55. Sidescan imagery of area E18.



Figure 56. Bathymetry of area E18.

### <u>Area E19</u>

Area E19 consisted of 161.7acres total in study with water depth ranges between 6.5ft – 8.5ft. The different bottom types present within the study area included 66.0 acres of soft mud/sand, 2.30 acres of buried shell, 68.5 acres of moderately firm mud/sand, and 24.9 acres of sand. There was no reef found within the study area. Dissolved oxygen reading was 6.27 mg/L. Surface salinity was 3.1 ppt, while bottom salinity was 5.1 ppt. Surface temperature and bottom temperature were both 30.4°C. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 57, 58, and 59, respectively.





Figure 58. Sidescan imagery of area E19.



Figure 59. Bathymetry of area E19.

### <u>Area E20</u>

Area E20 consisted of 1,008.5 acres total in study with water depth ranges between 3.0ft – 16.0ft. The different bottom types present within the study area included 537.4 acres of soft mud/sand, 110.8 acres of buried shell, 168.9 acres of moderately firm mud/sand, and 201.4 acres of sand. There was no reef found within the study area. Dissolved oxygen reading was 4.52 mg/L. Surface salinity was 1.1 ppt, while bottom salinity was 2.0 ppt. Surface temperature was 29.5°C, while bottom temperature was 29.4°C. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 60, 61, and 62, respectively.





Figure 61. Sidescan imagery of area E20.



Figure 62. Bathymetry of area E20.
### <u>Area E21</u>

Area E21 consisted of 326.9 acres total in study with water depth ranges between 3.5ft – 9.0ft. The different bottom types present within the study area included 147.9 acres of soft mud/sand, 9.70 acres of buried shell, 10.6 acres of moderately firm mud/sand, and 158.8 acres of sand. There was no reef found within the study area. Dissolved oxygen reading was 2.9 mg/L. Surface salinity was 1.5 ppt, while bottom salinity was 3.4 ppt. Surface temperature was 30.2°C, while bottom temperature was 30.4°C. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 63, 64, and 65, respectively.







Figure 64. Sidescan imagery of area E21.



Figure 65. Bathymetry of area E21.

#### <u>Area E22</u>

Area E22 consisted of 28.4 acres total in study with water depth ranges between 3.0ft – 6.0ft. The different bottom types present within the study area included 14.8 acres of soft mud/sand, 0.40 acres of buried shell, 4.90 acres of moderately firm mud/sand, and 8.30 acres of sand. There was no reef found within the study area. Dissolved oxygen reading was 6.81 mg/L. Surface and bottom salinities were both 1.7 ppt. Surface temperature was 30.5°C, while bottom temperature was 30.6°C. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 66, 67, and 68, respectively.







Figure 67. Sidescan imagery of area E22.



Figure 68. Bathymetry of area E22.

#### Area E23

Area E23 consisted of 69.3 acres total in study with water depth ranges between 7.0ft – 14.0ft. The different bottom types present within the study area included 56.6 acres of soft mud/sand, 4.10 acres of buried shell, 5.00 acres of moderately firm mud/sand, and 3.60 acres of sand. There was no reef found within the study area. Dissolved oxygen reading was 2.27 mg/L. Surface salinity was 0.8 ppt, while bottom salinity was 3.3 ppt. Surface temperature was 29.0°C, while bottom temperature was 29.2°C. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 69, 70, and 71, respectively.





Figure 70. Sidescan imagery of area E23.



Figure 71. Bathymetry of area E23.

#### Area E24

Area E24 consisted of 29.1 acres total in study with water depth ranges between 5.5ft – 7.5ft. The different bottom types present within the study area included 13.5 acres of soft mud/sand, 2.30 acres of buried shell, 12.3 acres of moderately firm mud/sand, and 1.00 acre of sand. There was no reef found within the study area. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 72, 73, and 74, respectively.





Figure 73. Sidescan imagery of area E24.



Figure 74. Bathymetry of area E24.

### <u>Area E25</u>

Area E25 consisted of 129.7 acres total in study with water depth ranges between 4.0ft – 9.0ft. The different bottom types present within the study area included 23.7 acres of soft mud/sand, 7.90 acres of buried shell, 10.9 acres of moderately firm mud/sand, 2.60 acres of exposed oyster shell, and 84.6 acres of sand. There was no reef found within the study area. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 75, 76, and 77, respectively.







Figure 76. Sidescan imagery of area E25.



Figure 77. Bathymetry of area E25.

#### Area E26

Area E26 consisted of 19.4 acres total in study with water depth ranges between 2.0ft – 8.5ft. The different bottom types present within the study area included 6.20 acres of soft mud/sand, 3.70 acres of buried shell, 4.90 acres of moderately firm mud/sand, and 4.60 acres of sand. There was no reef found within the study area. Dissolved oxygen reading was 5.57 mg/L. Surface salinity was 2.1 ppt, while bottom salinity was 2.5 ppt. Surface and bottom temperatures were both 29.7°C. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 78, 79, and 80, respectively.







### Area E27

Area E27 consisted of 274.0 acres total in study with water depth ranges between 6.5ft - 11.0ft. The different bottom types present within the study area included 128.8 acres of soft mud/sand, 13.3 acres of buried shell, 119.0 acres of moderately firm mud/sand, 6.40 acres of exposed oyster shell, and 6.50 acres of reef. Reef was relatively at level with surrounding soft mud/sand with a vertical relief of about 0in.-6in. The reef consisted of fragmented cultch material which held old dead seed and sack. All shells obtained were gray in color. Reef organisms found in samples included barnacles. Dissolved oxygen reading was 5.56 mg/L. Surface salinity was 3.1 ppt, while bottom salinity was 4.0 ppt. Surface and bottom temperatures were both 29.8°C. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 81, 82, and 83, respectively.





## Figure 82. Sidescan imagery of area E27. The blue square indicates sample location.



Figure 83. Bathymetry of area E27.

#### <u>Area E28</u>

Area E28 consisted of 144.8 acres total in study with water depth ranges between 4.0ft - 9.0ft. The different bottom types present within the study area included 106.9 acres of soft mud/sand, 24.8 acres of buried shell, 3.50 acres of exposed oyster shell, 9.10 acres of sand, and 0.90 acres of reef. Reef was relatively at level with surrounding soft/mud sand with a vertical relief of about 0in.-6in. The reef consisted of fragmented cultch material which held live spat and seed, as well as recent and old dead spat, seed, and sack. Shells obtained in sample one and two were all gray, while sample three held 5% brown and 95% gray shells. Reef organisms found in samples included barnacles, mud crabs, and mussels. Dissolved oxygen reading was 5.4 mg/L. Surface and bottom salinities were both 3.9 ppt. Surface and bottom temperatures were both 29.8°C. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 84, 85, and 86, respectively.





Figure 85. Sidescan imagery of area E28. The blue square indicates sample location.



Figure 86. Bathymetry of area E28.

#### <u>Area E29</u>

Area E29 consisted of 55.1 acres total in study with water depth ranges between 9.5ft – 12.5ft. The different bottom types present within the study area included 52.1 acres of soft mud/sand, 2.80 acres of buried shell, and 0.20 acres of exposed oyster shell. There was no reef found within the study area. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 87, 88, and, 89, respectively.





Figure 88. Sidescan imagery of area E29.



Figure 89. Bathymetry of area E29.

#### <u>Area E30</u>

Area E30 consisted of 118.6 acres total in study with water depth ranges between 6.0ft – 11.5ft. The different bottom types present within the study area included 30.1 acres of soft mud/sand, 8.40 acres of buried shell, 4.20 acres of exposed oyster shell, and 75.9 acres of sand. There was no reef found within the study area. Dissolved oxygen reading was 5.55 mg/L. Surface salinity was 3.2 ppt, while bottom salinity was 3.7 ppt. Surface temperature was 29.7°C, while bottom temperature was 29.6°C. Water bottom types, sidescan imagery, and bathymetry are shown in Figures 90, 91, and 92, respectively.





Figure 91. Sidescan imagery of area E30.



Figure 92. Bathymetry of area E30.

# **DISCUSSION**

In the Escambia Bay portion of the PBS, approximately 30% of the study areas based on previous oyster reef sightings from FWC and other watermen were found to have reef structure of some kind. Overall standing stock densities, when found, were extremely low, and dominantly spat sized oysters. Water quality was fairly consistent throughout Escambia Bay, with salinity seemingly the dominant factor for live oyster presence.

#### <u>Substrata</u>

Most of the study areas based on historical oyster sightings confirmed that at least sometime in the past, oyster bearing substrates were present. Of the 30 areas, 83% contained at least some portion of buried shell. Areas E1, E4, E5, E10, and E14 were the only areas to contain no reef, exposed shell, nor buried shell. In the eastern portion, the reefal structure ran predominantly north to south, with a large, connected structure in area E3, and many proximate and interconnected structures from E7 to E17. The southwestern portion had only a small portion of exposed reef in E27 and 28, but there were other areas of exposed shell in the surrounding areas, despite lack of actual reefal structure, but this section makes up less than 22% of the exposed shell, and less than 4% of the reef in the entire bay. Additionally, the presence of mud or soft sand substrates adjacent to the reef structures is fairly common in oyster reefs, and doesn't seem to be a restricting factor for overall oyster reef health.

Every other study area contained at least some portion of moderately firm or sandy substrate. The areas running approximately down the middle of the bay, from E10 to E13, western portions of E16 and E19, the central portion of E20, E23, and E29 contained the highest proportions of soft bottom mud/sand bottoms relative to firm and better bottom types. This is most likely due to the hydrodynamics of bay and material deposition from the Escambia river.

#### <u>Reef Quality</u>

Of the reef areas sampled, the vast majority of the reef structure was comprised of fragmented oyster cultch material, with some small portions of limestone in the samples from E3, E8, and E17. The dominantly grey color, with small portions of brown, or green brown, is typical of oyster reefs. All of the samples, including the one sample without any live oysters or old boxes (E16) were found to contain other invertebrates, including barnacles, mud crabs, mussels, and oyster drills. Drills were present in the areas with the highest density of reef (E3, E7, E8, and E9), which indicates enough live oysters to support some amount of predation. The presence and quality of reef structure, as well as accompanied invertebrate biome does not seem to be a restricting factor for overall oyster reef health.

#### <u>Standing Stock</u>

The standing stock of live oysters in Escambia Bay was found to be quite low despite the amount of oyster bearing material present in the bay. In fact, out of all 27 samples taken, only 9 sack sized, 47 seed sized, and 126 spat sized oysters were found, with the vast majority of all of those oysters being found in E8. Recent mortality was only found in samples E3, E8, and E28, while old boxes, indicative of past mortality were found in all of the samples except E9 and E16. In fact, the samples from E16 contained no live oysters nor oyster boxes, despite the exposed reef present in the southeastern portion of the study area.

The highest stock density, by far, was found in area E8. With a calculated potentioal of 246.5 sacks/acre, E8 sits in the geographic center of the north south reef strip on the eastern portion of the bay. Surprisingly, though, the next highest stock densities, 40.5 and 29.2 sacks per acre, were found at the northern most and southern most, E17 and E3, respectively, sections of the eastern bay.

It is also critical to understand that the potential stock densities mentioned are derived from calculations based on sacks of 180 oysters per sack, over a 3 year period, where spat and seed sized oysters are discounted at 90% and 50% mortality, respectively, for the remaining 2 years. As mentioned before, there were only 9 actual sack sized oysters present in the entire bay. The presence of spat oysters, as well as presence of old boxes of sack size, does indicate that there is a reproducing population of oysters, albeit small, present in the bay, and the low numbers of spat in general indicate there is some pressure being exerted on the oyster population restricting settlement and/or growth to seed and sack size.

#### Water Quality

Water quality in Escambia Bay remained fairly consistent throughout the entirety of the bay, with some minor variations. Temperature varied only 2°C, with a range of 29°C to 31°C throughout the entirety of the bay. This temperature is well within the limits of normal oyster habitats. Likewise dissolved oxygen measurements varied little, between 4.21 mg/L and 6.87 mg/L, with the exception of area E21 which measured 2.9 mg/L. Dissolved oxygen levels are likewise within the limits of normal oyster habitats.

Salinity measurements throughout Escambia Bay weres slightly more varied, but still within a relatively narrow range for brackish water environments. The lowest salinity reading (0.8 ppt), at the surface of area E23, was the most proximate to the mouth of the Escambia river, while the highest measurement (7.4 ppt) was at the bottom of E15, along the eastern portion of the bay. In all areas surface salinity was found to be lower than than the bottom salinity measurements, which is not unusual in areas of moderate freshwater influx, which tends to flow along the surface as it moves.

There does appear to be an effect of salinity on oyster population health and location in Escambia Bay. Figure 92 shows the portion of the bay that was found to have salinity measurements over 5.0 ppt both at the bottom and at the surface. Even this moderate salinity regime seems to have significant impact on the overall oyster population structure throughout the bay. Oyster populations struggle in salinities under 5 ppt (Starke 2011). In fact, despite populations existing in salinity ranges from 5 - 40 ppt (USDA 2018), a various articles in literature indicate ideal conditions area somwhere in the middle: 14 - 34 ppt (Baggett 2014), 12 - 20 ppt (Starke 2011), 15 - 25 ppt (Mann 2004). As can be seen throughout the entire bay, overall low salinity is a likely restriction on overall oyster population health in the area.



Figure 93. Green area indicates bottom salinity over 5 ppt. Yellow areas indicate both bottom and surface salinities over 5 ppt.

Future efforts for oyster repopulation in Escambia Bay should focus on the eastern portion where reefal habitats are still present in higher abundance, and a small population of oysters are currently residing. There is likely some hydrodynamic function of the bay causing freshwater influx to remain in the western portion, creating a salinity regime that demarcates the eastern portion as the only viable area for growth, albeit minimally in the current low salinity regimes. More in depth hydrographic surveys would be key in understanding if this regime fluctuates temporally or even consistently. This data may be key in understanding where the highest salinities in the bay are dominant. Likely restoration areas should include areas devoid of reefal structures but with better salinity conditions, proximal to existing reefal areas in order to maximize larval settlement and continued growth.

It should be noted that unless the current salinity regime can be modified, restoration efforts will likely be hampered by consistent freshwater influx. Future surveys as part of the Habitat Suitability Model (HMS) should consider the possibility of either restoration of natural meandering freshwater flow upstream (i.e. reduction of streamlined freshwater flow due to development along riparian zones), or increased saltwater influx (i.e. additional channel cuts in the PBS system) if prioritization of restoring healthy oyster reefs.

Submitted by:

Habuel Johnson

Gabriel Johnson OLDEB Certified Biologist MREC Environmental, LLC

# Appendix A - Sample Data



| SQUARE METER QUADRANT SAMPLE                               |                                                   |                        |                                                               |                                                      |
|------------------------------------------------------------|---------------------------------------------------|------------------------|---------------------------------------------------------------|------------------------------------------------------|
| Study Area: E                                              | 3                                                 |                        | Sample No: 2                                                  |                                                      |
| Location:<br>Oyster Area:<br>Parish/County:<br>Depth (ft): | Escambia Ba<br>Pensacola Ba<br>Escambia Co<br>8.2 | y<br>ay System<br>unty | Collection Method:<br>Sample Date:<br>Latitude:<br>Longitude: | Scuba Diver<br>7/19/2021<br>30°27.991'<br>87°06.072' |
| SQM #2 Bas                                                 | ket Photo                                         |                        |                                                               | Th                                                   |
| Picture Date:                                              | //19/2021                                         |                        | Escantaza Bay<br>Anga Kas<br>19 July 21 2                     |                                                      |
| SQM #2 Tal<br>Picture Date                                 | ble Photo<br>: 7/19/2021                          |                        |                                                               |                                                      |
| SQM #2 Oys<br>Picture Date                                 | ster Photo<br>: 7/19/2021                         | •                      | Escambita Bay<br>Area Es<br>19 July 21<br>2                   |                                                      |
| SQM #2 Bo<br>Picture Date                                  | ox Photo<br>: 7/19/2021                           |                        | Escambia Bay<br>Area E3<br>19 July 21                         |                                                      |
| SQUARE METER QUADRANT SAMPLE                               |                                                                |                                                               |                                                      |  |  |  |  |  |
|------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------|--|--|--|--|--|
| Study Area: E                                              | 3                                                              | Sample No: 3                                                  |                                                      |  |  |  |  |  |
| Location:<br>Oyster Area:<br>Parish/County:<br>Depth (ft): | Escambia Bay<br>Pensacola Bay System<br>Escambia County<br>8.2 | Collection Method:<br>Sample Date:<br>Latitude:<br>Longitude: | Scuba Diver<br>7/19/2021<br>30°27.991'<br>87°06.072' |  |  |  |  |  |
|                                                            |                                                                |                                                               |                                                      |  |  |  |  |  |
| SQM #3 Bas<br>Picture Date:<br>SQM #3 Tal<br>Picture Date: | ket Photo         7/19/2021                                    | <image/>                                                      |                                                      |  |  |  |  |  |
|                                                            |                                                                |                                                               |                                                      |  |  |  |  |  |

|                   | SQUARE METER QUADRANT SAMPLE |                                       |                 |              |                           |                       |                |  |
|-------------------|------------------------------|---------------------------------------|-----------------|--------------|---------------------------|-----------------------|----------------|--|
| Stı               | ıdy Area:                    | E3                                    |                 |              | S                         | Sample No:            | 1              |  |
| Oys<br>Loc<br>Cou | ter Area:<br>ation:<br>ınty: | Pensacola B<br>Escambia B<br>Escambia | ay System<br>ay |              |                           | Sample Date:          | 7/19/2021      |  |
|                   | Shell length<br>(mm)         | Live                                  | Recent Dead     | Old Dead     | % Frequency               | % Recent<br>Mortality | % Mortality    |  |
|                   | 0 0-4                        | 7                                     |                 |              | 20.00%                    | 0.00%                 | 0.00%          |  |
| at                | 1 5-9                        | 24                                    |                 | 1            | 71.43%                    | 0.00%                 | 4.00%          |  |
| Sp                | 2 10-14                      | 2                                     |                 | _            | 5.71%                     | 0.00%                 | 0.00%          |  |
|                   | 3 15-19                      |                                       |                 |              |                           |                       |                |  |
|                   | 4 20-24<br>5 25-29           |                                       | 1               |              | 2.86%                     | 100.00%               | 100.00%        |  |
|                   | 6 <u>30-34</u>               |                                       | 1               |              | 2.00 /0                   | 100.00 %              | 100.00 %       |  |
|                   | 7 35-39                      |                                       |                 |              |                           |                       |                |  |
|                   | 8 40-44                      |                                       |                 |              |                           |                       |                |  |
| ed                | 9 45-49                      |                                       |                 |              |                           |                       |                |  |
| Se                | 10 50-54                     |                                       |                 |              |                           |                       |                |  |
|                   | 11 55-59                     |                                       |                 |              |                           |                       |                |  |
|                   | 12 60-64                     |                                       |                 |              |                           |                       |                |  |
|                   | 13 65-69                     |                                       |                 |              |                           |                       |                |  |
|                   | 14 70-74                     |                                       |                 |              |                           |                       |                |  |
|                   | 15 75-79                     |                                       |                 |              |                           |                       |                |  |
|                   | 17 85-89                     |                                       |                 |              |                           |                       |                |  |
|                   | 18 90-94                     |                                       |                 |              |                           |                       |                |  |
|                   | 19 95-99                     |                                       |                 |              |                           |                       |                |  |
| ъ                 | 20 100-104                   |                                       |                 |              |                           |                       |                |  |
| Sa                | 21 105-109                   |                                       |                 |              |                           |                       |                |  |
|                   | 22 110-114                   |                                       |                 |              |                           |                       |                |  |
|                   | 23 115-119                   |                                       |                 |              |                           |                       |                |  |
|                   | 24 120-124                   |                                       |                 |              |                           |                       |                |  |
|                   | 25 125-129                   |                                       |                 |              |                           |                       |                |  |
|                   | Totals                       | 33                                    | 1               | 1            | 100.00%                   | 2 94%                 | 5 71%          |  |
|                   | 100015                       |                                       | OVETER          |              |                           | 2:3470                | 5.7178         |  |
|                   |                              |                                       | UTSTER S        | DIZE DISTRIE | SUTION                    |                       |                |  |
|                   |                              |                                       |                 |              |                           |                       | Live           |  |
|                   | 3                            | 5                                     |                 |              |                           |                       | Recent<br>Dead |  |
|                   | 3                            |                                       |                 |              |                           |                       | ■Old Dead      |  |
|                   | 2                            | 25                                    |                 |              |                           |                       |                |  |
|                   | 2                            | 20                                    |                 |              |                           |                       |                |  |
|                   | :                            | 15                                    |                 |              |                           |                       |                |  |
|                   |                              | 10                                    |                 |              |                           |                       |                |  |
|                   |                              |                                       |                 |              |                           |                       |                |  |
|                   |                              | 5                                     |                 | -            |                           | Old Dead              |                |  |
|                   |                              | 0                                     |                 |              |                           | Recent Dead           |                |  |
|                   |                              | 0 - 24 mm S                           | pat<br>25-74 mm | Seed         |                           | ve                    |                |  |
|                   |                              |                                       |                 | >            | 7 <del>4</del> 11111 JdCK |                       |                |  |
| 1                 |                              |                                       |                 |              |                           |                       |                |  |

|                   | SQUARE METER QUADRANT SAMPLE  |                                        |                 |             |             |                       |                |  |
|-------------------|-------------------------------|----------------------------------------|-----------------|-------------|-------------|-----------------------|----------------|--|
| Stı               | ıdy Area:                     | E3                                     |                 |             | S           | Sample No:            | 2              |  |
| Oys<br>Loc<br>Cou | iter Area:<br>ation:<br>inty: | Pensacola B<br>Escambia Ba<br>Escambia | ay System<br>ay |             |             | Sample Date:          | 7/19/2021      |  |
|                   | Shell length<br>(mm)          | Live                                   | Recent Dead     | Old Dead    | % Frequency | % Recent<br>Mortality | % Mortality    |  |
|                   | 0 0-4                         | 1                                      |                 |             | 12.50%      | 0.00%                 | 0.00%          |  |
| Ħ                 | 1 5-9                         | 5                                      |                 |             | 62.50%      | 0.00%                 | 0.00%          |  |
| Spa               | 2 10-14                       |                                        | 1               |             | 12.50%      | 100.00%               | 100.00%        |  |
|                   | 3 15-19                       |                                        |                 |             |             |                       |                |  |
|                   | 4 20-24                       |                                        |                 |             |             |                       |                |  |
|                   | 5 25-29                       |                                        |                 |             |             |                       |                |  |
|                   | 6 30-34                       |                                        |                 |             |             |                       |                |  |
|                   | 7 35-39                       | -                                      | -               |             | 40.50%      |                       | 100.000/       |  |
| 5                 | 8 40-44                       |                                        |                 | 1           | 12.50%      |                       | 100.00%        |  |
| ee                | 9 45-49                       |                                        |                 |             |             |                       |                |  |
| ပ                 | 10 50-54                      |                                        |                 |             |             |                       |                |  |
|                   | 11 55-59                      |                                        |                 |             | +           |                       |                |  |
|                   | 12 00-04                      |                                        |                 |             |             |                       |                |  |
|                   | 14 70-74                      |                                        |                 |             |             |                       |                |  |
|                   | 15 75-79                      |                                        |                 |             |             |                       |                |  |
|                   | 16 80-84                      |                                        |                 |             |             |                       |                |  |
|                   | 17 85-89                      |                                        |                 |             |             |                       |                |  |
|                   | 18 90-94                      |                                        |                 |             |             |                       |                |  |
|                   | 19 95-99                      |                                        |                 |             |             |                       |                |  |
| Sack              | 20 100-104                    |                                        |                 |             |             |                       |                |  |
|                   | 21 105-109                    |                                        |                 |             |             |                       |                |  |
|                   | 22 110-114                    |                                        |                 |             |             |                       |                |  |
|                   | 23 115-119                    |                                        |                 |             |             |                       |                |  |
|                   | 24 120-124                    |                                        |                 |             |             |                       |                |  |
|                   | 25 125-129                    |                                        |                 |             |             |                       |                |  |
|                   | 26 >130                       |                                        |                 |             |             |                       |                |  |
|                   | Totals                        | 6                                      | 1               | 1           | 100.00%     | 14.29%                | 25.00%         |  |
|                   |                               |                                        | OYSTER S        | IZE DISTRIE | UTION       |                       |                |  |
|                   |                               |                                        |                 |             |             |                       | Live           |  |
|                   |                               | 5                                      |                 |             |             |                       | Recent<br>Dead |  |
|                   |                               | 4                                      |                 |             |             |                       | Old Dead       |  |
|                   |                               |                                        |                 |             |             |                       |                |  |
|                   |                               | 3                                      |                 |             |             |                       |                |  |
|                   |                               | 2                                      |                 |             |             |                       |                |  |
|                   |                               |                                        |                 |             |             | _                     |                |  |
|                   |                               |                                        |                 | -           |             | Old Dead              |                |  |
|                   |                               | 0 - 24                                 |                 |             |             | Recent Dead           |                |  |
|                   |                               | mm                                     | 25-74           | 1           |             |                       |                |  |
|                   |                               | Spat                                   | mm<br>Seed      |             | >74 mm      |                       |                |  |
|                   |                               |                                        | Seed            |             | JOLK        |                       |                |  |
|                   |                               |                                        |                 |             |             |                       |                |  |
| 1                 |                               |                                        |                 |             |             |                       |                |  |



# Study Area: E3

### Acres in Study Area: 165.4 Acres with Oysters: 30.6

Oyster Area: Location:

Area: Pensacola Bay System n: Escambia Bay Escambia

Sample Date: 7/19/2021

| C                      | ULTCH/MATERIALS | PRESENT  |          |
|------------------------|-----------------|----------|----------|
| Material               | Sample 1        | Sample 2 | Sample 3 |
| Crush Concrete         | 0               | 0        | 0        |
| Limestone              | Х               | Х        | Х        |
| Oyster Shell Cultch    | Х               | Х        | Х        |
| Oyster Shell Fragments | Х               | Х        | Х        |
| Oyster Shell Rubble    | Х               | Х        | Х        |
| Oyster Clusters        | 0               | 0        | 0        |
| Oyster Singles         | Х               | Х        | 0        |
| Broken Oyster Shells   | 0               | 0        | 0        |
| Clam Shells            | Х               | Х        | Х        |
| Marsh Debris           | 0               | 0        | 0        |
| H2S Odor               | 0               | 0        | 0        |

### **OYSTER REEF ORGANISMS - PRESENT**

| Species        | Sample 1 | Sample 2 | Sample 3 |
|----------------|----------|----------|----------|
| Barnacles      | Х        | Х        | Х        |
| Brittle Stars  | 0        | 0        | 0        |
| Sea Squirts    | 0        | 0        | 0        |
| Slipper Shells | 0        | 0        | 0        |
| Bryozoan       | 0        | 0        | 0        |

| Material      | Sample 1    | Sample 2 | Sample 3 |
|---------------|-------------|----------|----------|
| Oyster Drills | 3           | 1        | 3        |
| Hermit Crabs  | 0           | 1        | 0        |
| Mud Crabs     | 1           | 0        | 0        |
| Mussels       | 0           | 2        | 2        |
| Rangia        | 0           | 0        | 0        |
| Material      | Total Count |          |          |
| Oyster Drills | 7           |          |          |
| Hermit Crabs  | 1           |          |          |
| Mud Crabs     | 1           |          |          |
| Mussels       | 4           |          |          |
| Rangia        | 0           |          |          |

| Sample 1    |     |  |  |  |  |
|-------------|-----|--|--|--|--|
| Shell Color | %   |  |  |  |  |
| Brown-Green | 0   |  |  |  |  |
| Brown       | 0   |  |  |  |  |
| Black       | 0   |  |  |  |  |
| Gray        | 100 |  |  |  |  |



# OYSTER SHELL COLOR

| Sample 2    |     |  |  |  |
|-------------|-----|--|--|--|
| Shell Color | %   |  |  |  |
| Brown-Green | 0   |  |  |  |
| Brown       | 0   |  |  |  |
| Black       | 0   |  |  |  |
| Gray        | 100 |  |  |  |



| Sample 3    |     |  |  |  |  |
|-------------|-----|--|--|--|--|
| Shell Color | %   |  |  |  |  |
| Brown-Green | 0   |  |  |  |  |
| Brown       | 0   |  |  |  |  |
| Black       | 0   |  |  |  |  |
| Gray        | 100 |  |  |  |  |
|             |     |  |  |  |  |



|                                      |                                         |                | OYST                       | ER DENSI                    | TIES       |                            |                               |                    |
|--------------------------------------|-----------------------------------------|----------------|----------------------------|-----------------------------|------------|----------------------------|-------------------------------|--------------------|
| Study Area                           | : E3                                    |                |                            |                             |            | Acres with C               | es in Study:<br>Dyster Reef:  | 165.4<br>30.6      |
| Oyster Area:<br>Location:<br>County: | Pensacola Ba<br>Escambia Ba<br>Escambia | ay System<br>y |                            |                             |            |                            | Sample Date:                  | 7/19/2021          |
|                                      | 0                                       | ysters in Sam  | ole                        |                             | S          | Sacks Per Acr              | 9                             |                    |
| Sample #                             | <24mm                                   | 25-74          | >75mm                      | All sizes                   | Disc       | ounted for Morta           | lities                        | Total              |
| -                                    | spat                                    | seed           | sack                       | 180oys/sack                 | spat(10%)  | seed(50%)                  | sack                          |                    |
|                                      |                                         |                |                            |                             |            |                            |                               |                    |
| 1                                    | 33                                      | 0              | 0                          | 742                         | 74         | 0                          | 0                             | 74                 |
| 2                                    | 6                                       | 0              | 0                          | 135                         | 13         | 0                          | 0                             | 13                 |
| 3                                    | 0                                       | 0              | 0                          | 0                           | 0          | 0                          | 0                             | 0                  |
|                                      |                                         |                |                            |                             |            |                            |                               |                    |
| TOTAL                                | 39                                      | 0              | 0                          | 877                         | 88         | 0                          | 0                             | 88                 |
|                                      | 12.0                                    | 0.0            | 0.0                        | 202.2                       | 20.2       | 0.0                        | 0.0                           | 20.0               |
| AVERAGE                              | 13.0                                    | 0.0            | 0.0                        | 292.2                       | 29.2       | 0.0                        | 0.0                           | 29.2               |
|                                      |                                         | E              | STIMATED P                 | OTENTIAL ST                 |            | P                          |                               |                    |
| Average Sad                          | cks Per Acre                            |                | No. of Acres H             | lolding Oysters             |            | Estimated No<br>Sacks in S | o. of Potential<br>Study Area |                    |
| 2                                    | 9                                       | х              | 30                         | 0.6                         | =          | 89                         | 94                            |                    |
| from s<br>meter s                    | quare<br>amples                         |                | determined fro<br>scan son | om poling/side<br>ar survey |            |                            |                               |                    |
|                                      |                                         |                |                            |                             |            |                            |                               |                    |
|                                      |                                         | 5              | SQUARE MET                 |                             | MORTALITIE | 5                          |                               |                    |
|                                      |                                         |                |                            |                             |            |                            |                               | 1                  |
| Sample #                             |                                         | # Live Oysters | # Recent<br>Boxes          | # Old Boxes                 |            | Recent<br>Mortality        |                               | Total Mortality    |
| 1                                    |                                         | 33             | 1                          | 1                           |            | 3%                         |                               | 6%                 |
| 2                                    |                                         | 6              | 1                          | 1                           |            | 14%                        |                               | 25%                |
| 3                                    | 1                                       | 0              | 0                          | 0                           |            | 0%                         |                               | 0%                 |
|                                      | -                                       | -              |                            | -                           |            |                            |                               | -                  |
| Total                                |                                         | 39             | 2                          | 2                           |            | Recent<br>Mortality        |                               | Total<br>Mortality |
| Average                              |                                         | 13.0           | 0.7                        | 0.7                         |            | 5.7%                       |                               | 10%                |

| SQUARE METER QUADRANT SAMPLE                               |                                                                 |                                                               |                                                    |  |  |  |  |
|------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|--|--|--|--|
| Study Area: E                                              | 7                                                               | Sample No: 1                                                  |                                                    |  |  |  |  |
| Location:<br>Oyster Area:<br>Parish/County:<br>Depth (ft): | Pensacola Bay System<br>Escambia Bay<br>Escambia County<br>11.1 | Collection Method:<br>Sample Date:<br>Latitude:<br>Longitude: | Scuba Diver<br>7/21/2021<br>30°28.920<br>87°06.898 |  |  |  |  |
| SQM #1 Bas<br>Picture Date:                                | ket Photo<br>7/21/2021                                          | ESCAMBIN BAY<br>AREA E?<br>JUIY '21                           |                                                    |  |  |  |  |
| SQM #1 Tal<br>Picture Date.                                | ble Photo         · 7/21/2021                                   |                                                               |                                                    |  |  |  |  |
|                                                            |                                                                 |                                                               |                                                    |  |  |  |  |
| SQM #1 Bo<br>Picture Date:                                 | DX Photo<br>7/21/2021                                           | ESCA Già Đày<br>AREA E 7<br>July 21<br>1                      |                                                    |  |  |  |  |
|                                                            | •                                                               |                                                               |                                                    |  |  |  |  |

| SQUARE METER QUADRANT SAMPLE                               |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |  |  |  |  |  |
|------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|--|--|--|
| Study Area: E                                              | 7                                                               | Sample No: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |  |  |  |  |  |
| Location:<br>Oyster Area:<br>Parish/County:<br>Depth (ft): | Pensacola Bay System<br>Escambia Bay<br>Escambia County<br>11.1 | Collection Method:<br>Sample Date:<br>Latitude:<br>Longitude:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Scuba Diver<br>7/21/2021<br>30°28.920<br>87°06.898 |  |  |  |  |  |
| SQM #2 Bas<br>Picture Date:<br>SQM #2 Tal<br>Picture Date  | Sket Photo         7/21/2021                                    | Escawiora sav<br>Area e 7<br>Joing 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |  |  |  |  |  |
| SOM #2 Ov                                                  | tor Photo                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |  |  |  |  |  |
| Picture Date                                               | <u>: 7/21/2021</u>                                              | ESCANDIA BAY<br>AREA E7<br>July '21<br>Constant of the second secon |                                                    |  |  |  |  |  |

| SQUARE METER QUADRANT SAMPLE                                                              |                                                                                                       |                                                               |                                                    |  |  |  |  |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|--|--|--|--|
| Study Area: E                                                                             | 7                                                                                                     | Sample No: 3                                                  |                                                    |  |  |  |  |
| Location:<br>Oyster Area:<br>Parish/County:<br>Depth (ft):                                | Pensacola Bay System<br>Escambia Bay<br>Escambia County<br>11.1                                       | Collection Method:<br>Sample Date:<br>Latitude:<br>Longitude: | Scuba Diver<br>7/21/2021<br>30°28.920<br>87°06.898 |  |  |  |  |
| SQM #3 Bas<br>Picture Date:<br>SQM #3 Tal<br>Picture Date.<br>SQM #3 Oys<br>Picture Date. | Ster Photo   T/21/2021     De Photo   T/21/2021     Ster Photo   T/21/2021     Ster Photo   T/21/2021 | <image/>                                                      |                                                    |  |  |  |  |
| SQM #3 Oys<br>Picture Date                                                                | ster Photo<br>: 7/21/2021                                                                             | ESCATORA BAY<br>AREA E7<br>JUN 21<br>JUN 21                   | •                                                  |  |  |  |  |

|                   | SQUARE METER QUADRANT SAMPLE  |                                     |              |          |                  |                               |                                                                     |  |
|-------------------|-------------------------------|-------------------------------------|--------------|----------|------------------|-------------------------------|---------------------------------------------------------------------|--|
| Stı               | ıdy Area:                     | E7                                  |              |          | S                | Sample No:                    | 1                                                                   |  |
| Oys<br>Loc<br>Cou | ster Area:<br>ation:<br>ınty: | Pensacola B<br>East Bay<br>Escambia | ay System    |          |                  | Sample Date:                  | 7/22/2021                                                           |  |
|                   | Shell length<br>(mm)          | Live                                | Recent Dead  | Old Dead | % Frequency      | % Recent<br>Mortality         | % Mortality                                                         |  |
|                   | 0 0-4                         |                                     |              |          |                  |                               |                                                                     |  |
| at                | 1 5-9                         |                                     |              |          | _                |                               |                                                                     |  |
| Sp                | 2 10-14                       |                                     |              | 2        | 40.00%           |                               | 100.00%                                                             |  |
|                   | 3 15-19<br>4 20-24            |                                     |              | 2        | 40.00%           |                               | 100.00%                                                             |  |
|                   | 5 25-29                       |                                     |              | 1        | 20.0070          |                               | 100.0070                                                            |  |
|                   | 6 30-34                       |                                     |              | 1        | 20.00%           |                               | 100.00%                                                             |  |
|                   | 7 35-39                       |                                     |              |          |                  |                               |                                                                     |  |
|                   | 8 40-44                       |                                     |              |          |                  |                               |                                                                     |  |
| ed                | 9 45-49                       |                                     |              |          |                  |                               |                                                                     |  |
| Se                | 10 50-54                      |                                     |              |          |                  |                               |                                                                     |  |
|                   | 11 55-59                      |                                     |              |          |                  |                               |                                                                     |  |
|                   | 12 60-64                      |                                     |              | 1        | 20.00%           |                               | 100.00%                                                             |  |
|                   | 13 65-69                      |                                     |              |          | -                |                               |                                                                     |  |
|                   | 14 /0-/4                      |                                     |              |          |                  |                               |                                                                     |  |
|                   | 15 75-79                      |                                     |              |          |                  |                               |                                                                     |  |
|                   | 17 85-89                      |                                     |              |          |                  |                               |                                                                     |  |
|                   | 18 90-94                      |                                     |              |          |                  |                               |                                                                     |  |
|                   | 19 95-99                      |                                     |              |          |                  |                               |                                                                     |  |
| ч                 | 20 100-104                    |                                     |              |          |                  |                               |                                                                     |  |
| Sa                | 21 105-109                    |                                     |              |          |                  |                               |                                                                     |  |
|                   | 22 110-114                    |                                     |              |          |                  |                               |                                                                     |  |
|                   | 23 115-119                    |                                     |              |          |                  |                               |                                                                     |  |
|                   | 24 120-124                    |                                     |              |          |                  |                               |                                                                     |  |
|                   | 25 125-129                    |                                     |              |          |                  |                               |                                                                     |  |
|                   | 26 >130                       | 0                                   | 0            | E        | 100.00%          | 0.00%                         | 100 00%                                                             |  |
|                   | Totals                        | 0                                   |              | 3        | 100.00%          | 0.00%                         | 100.00%                                                             |  |
|                   | 2.                            | 3                                   | 1-           |          |                  |                               | <ul> <li>Live</li> <li>Recent<br/>Dead</li> <li>Old Dead</li> </ul> |  |
|                   | 1                             | 2<br>.5<br>1<br>0.5<br>0 - 24 mm S  | pat 25-74 mm | Seed >   | Li<br>74 mm Sack | Old Dead<br>Recent Dead<br>ve |                                                                     |  |

|                    | SQUARE METER QUADRANT SAMPLE  |                                     |             |          |             |                       |                                       |  |
|--------------------|-------------------------------|-------------------------------------|-------------|----------|-------------|-----------------------|---------------------------------------|--|
| Stı                | ıdy Area:                     | E7                                  |             |          | S           | Sample No:            | 2                                     |  |
| Oys<br>Loca<br>Cou | iter Area:<br>ation:<br>inty: | Pensacola B<br>East Bay<br>Escambia | ay System   |          |             | Sample Date:          | 7/22/2021                             |  |
|                    | Shell length<br>(mm)          | Live                                | Recent Dead | Old Dead | % Frequency | % Recent<br>Mortality | % Mortality                           |  |
|                    | 0 0-4                         |                                     |             |          |             |                       |                                       |  |
| at                 | 1 5-9                         |                                     |             |          |             |                       |                                       |  |
| Sp                 | 2 10-14<br>3 15-19            |                                     |             |          |             |                       |                                       |  |
|                    | 4 20-24                       |                                     |             |          |             |                       |                                       |  |
|                    | 5 25-29                       |                                     |             |          |             |                       |                                       |  |
|                    | 6 30-34                       |                                     |             |          |             |                       |                                       |  |
|                    | 7 35-39                       |                                     |             |          |             |                       |                                       |  |
| 5                  | 8 40-44                       |                                     |             |          |             |                       |                                       |  |
| ee                 | 9 45-49                       |                                     |             |          |             |                       |                                       |  |
| ပ                  | 10 50-54                      |                                     |             |          |             |                       |                                       |  |
|                    | 12 60-64                      |                                     |             | 1        | 50.00%      |                       | 100.00%                               |  |
|                    | 13 65-69                      |                                     |             |          |             |                       |                                       |  |
|                    | 14 70-74                      |                                     |             | 1        | 50.00%      |                       | 100.00%                               |  |
|                    | 15 75-79                      |                                     |             |          |             |                       |                                       |  |
|                    | 16 80-84                      |                                     |             |          |             |                       |                                       |  |
|                    | 17 85-89                      |                                     |             |          |             |                       |                                       |  |
|                    | 18 90-94                      |                                     |             |          |             |                       |                                       |  |
| ×                  | 20 100-104                    |                                     |             |          |             |                       |                                       |  |
| Sac                | 21 105-109                    |                                     |             |          |             |                       |                                       |  |
| •••                | 22 110-114                    |                                     |             |          |             |                       |                                       |  |
|                    | 23 115-119                    |                                     |             |          |             |                       |                                       |  |
|                    | 24 120-124                    |                                     |             |          |             |                       |                                       |  |
|                    | 25 125-129                    |                                     |             |          |             |                       |                                       |  |
|                    | 26 >130                       | 0                                   | 0           | 2        | 400.00%     | 0.00%                 | 400.00%                               |  |
|                    | TOLAIS                        | 0                                   |             |          | 100.00%     | 0.00%                 | 100.00%                               |  |
|                    | 1.8                           | 2 8                                 |             |          |             |                       | <ul><li>Live</li><li>Recent</li></ul> |  |
|                    | 1                             | 6                                   |             |          |             |                       | Dead                                  |  |
|                    | 1.                            | 4                                   |             |          |             |                       | ■Old Dead                             |  |
|                    | 1.                            | 2                                   |             | _        |             |                       |                                       |  |
|                    |                               | 1                                   |             | _        |             |                       |                                       |  |
|                    | 0                             |                                     |             | _        |             |                       |                                       |  |
|                    | 0                             | .0                                  |             | _        |             |                       |                                       |  |
|                    | 0                             | .6                                  |             |          |             |                       |                                       |  |
|                    | 0                             | .4                                  |             |          |             |                       |                                       |  |
|                    | 0                             | 0.2                                 |             |          |             | Old Dead              |                                       |  |
|                    |                               | 0                                   |             |          | - /         | Recent Dead           |                                       |  |
|                    |                               | 0 - 24                              | 75 7        | 1        |             | ve                    |                                       |  |
|                    |                               | Spat                                | 25-74<br>mm | T        | >74 mm      |                       |                                       |  |
| 1                  |                               |                                     | Seed        |          | Sack        |                       |                                       |  |
|                    |                               |                                     |             |          |             |                       |                                       |  |
|                    |                               |                                     |             |          |             |                       |                                       |  |



Study Area: E7

### Acres in Study Area: 227.3 Acres with Oysters: 57.8

Oyster Area: Location: County:

ea: Pensacola Bay System East Bay

East Bay Escambia Sample Date: 7/22/2021

Sample 3

%

0

0

0

100

Shell Color

Brown-Green

Brown

Black

Gray

### CULTCH/MATERIALS PRESENT

| Material               | Sample 1 | Sample 2 | Sample 3 |
|------------------------|----------|----------|----------|
| Crush Concrete         | 0        | 0        | 0        |
| Limestone              | 0        | 0        | 0        |
| Oyster Shell Cultch    | Х        | Х        | Х        |
| Oyster Shell Fragments | Х        | Х        | Х        |
| Oyster Shell Rubble    | Х        | Х        | Х        |
| Oyster Clusters        | Х        | 0        | Х        |
| Oyster Singles         | Х        | Х        | Х        |
| Broken Oyster Shells   | 0        | 0        | 0        |
| Clam Shells            | Х        | Х        | Х        |
| Marsh Debris           | 0        | 0        | 0        |
| H2S Odor               | 0        | 0        | 0        |

### **OYSTER REEF ORGANISMS - PRESENT**

| Species        | Sample 1 | Sample 2 | Sample 3 |
|----------------|----------|----------|----------|
| Barnacles      | 0        | 0        | 0        |
| Brittle Stars  | 0        | 0        | 0        |
| Sea Squirts    | 0        | 0        | 0        |
| Slipper Shells | 0        | 0        | 0        |
| Bryozoan       | 0        | 0        | 0        |

| Material      | Sample 1    | Sample 2 | Sample |
|---------------|-------------|----------|--------|
| Oyster Drills | 1           | 0        | 0      |
| Hermit Crabs  | 0           | 0        | 0      |
| Mud Crabs     | 0           | 0        | 0      |
| Mussels       | 0           | 0        | 0      |
| Rangia        | 0           | 0        | 0      |
| Material      | Total Count |          | _      |
| Oyster Drills | 1           |          |        |
| Hermit Crabs  | 0           |          |        |
| Mud Crabs     | 0           |          |        |
| Mussels       | 0           |          |        |
| Rangia        | 0           |          |        |

| Sample 1    |     |  |  |  |  |
|-------------|-----|--|--|--|--|
| Shell Color | %   |  |  |  |  |
| Brown-Green | 0   |  |  |  |  |
| Brown       | 0   |  |  |  |  |
| Black       | 0   |  |  |  |  |
| Gray        | 100 |  |  |  |  |





# **OYSTER DENSITIES**

| Stu | dy | Area: | E7 |
|-----|----|-------|----|
|     |    |       |    |

# Acres in Study: 227.3

Acres with Oyster Reef: 57.8

| Oyster Area:<br>Location:<br>County: | Pensacol<br>East Bay<br>Escambia | a Bay System   |                            |                                    |            |                            | Sample Date                   | : 7/22/2021     |
|--------------------------------------|----------------------------------|----------------|----------------------------|------------------------------------|------------|----------------------------|-------------------------------|-----------------|
|                                      | 0                                | sters in Sam   | ole                        |                                    | S          | Sacks Per Acr              | е                             |                 |
| Sample #                             | <24mm                            | 25-74          | >75mm                      | All sizes                          | Disc       | ounted for Morta           | lities                        | Total           |
|                                      | spat                             | seed           | sack                       | 180oys/sack                        | spat(10%)  | seed(50%)                  | sack                          | 1               |
|                                      |                                  |                |                            |                                    |            |                            |                               |                 |
| 1                                    | 0                                | 0              | 0                          | 0                                  | 0          | 0                          | 0                             | 0               |
| 2                                    | 0                                | 0              | 0                          | 0                                  | 0          | 0                          | 0                             | 0               |
| 3                                    | 0                                | 0              | 0                          | 0                                  | 0          | 0                          | 0                             | 0               |
|                                      |                                  |                |                            |                                    |            |                            |                               |                 |
| TOTAL                                | 0                                | 0              | 0                          | 0                                  | 0          | 0                          | 0                             | 0               |
|                                      |                                  |                |                            |                                    |            |                            |                               |                 |
| AVERAGE                              | 0.0                              | 0.0            | 0.0                        | 0.0                                | 0.0        | 0.0                        | 0.0                           | 0.0             |
|                                      |                                  |                |                            |                                    |            |                            |                               |                 |
|                                      |                                  | E              | STIMATED P                 | OTENTIAL ST                        | ANDING CRC | )P                         |                               |                 |
| Average Sacks                        | Per Acre                         | Y              | No. of Acres H             | lolding Oysters                    |            | Estimated No<br>Sacks in S | o. of Potential<br>Study Area |                 |
| u<br>from squa<br>meter sam          | are<br>iples                     | X              | determined fro<br>scan son | 7.8<br>om poling/side<br>ar survey | =          |                            | J                             |                 |
|                                      |                                  |                |                            |                                    |            |                            |                               |                 |
|                                      |                                  | S              | SQUARE MET                 |                                    | MORTALITIE | S                          |                               |                 |
|                                      |                                  |                |                            |                                    |            |                            | -                             | -               |
| Sample #                             |                                  | # Live Oysters | # Recent<br>Boxes          | # Old Boxes                        |            | Recent<br>Mortality        |                               | Total Mortality |
| 1                                    |                                  | 0              | 0                          | 5                                  |            | 0%                         |                               | 100%            |
| 2                                    |                                  | 0              | 0                          | 2                                  |            | 0%                         |                               | 100%            |
| 3                                    |                                  | 0              | 0                          | 2                                  |            | 0%                         |                               | 100%            |
|                                      | -                                |                |                            | -                                  |            |                            | -                             | -               |
| Total                                |                                  | 0              | 0                          | 0                                  |            | Recent                     |                               | Total           |
| iotai                                |                                  | 0              | 0                          | 9                                  |            | Mortality                  |                               | Mortality       |
| Average                              | 1                                | 0.0            | 0.0                        | 3.0                                |            | 0.0%                       |                               | 100%            |

# SQUARE METER QUADRANT SAMPLE

| Study Area: E  | 8                    | Sample No: 1       |            |
|----------------|----------------------|--------------------|------------|
| Location:      | Escambia Bay         | Collection Method: | Scuba Dive |
| Oyster Area:   | Pensacola Bay System | Sample Date:       | 7/21/2021  |
| Parish/County: | Escambia             | Latitude:          | 30°29.986  |
| Depth (ft):    | 9.4                  | Longitude:         | 87°06.509  |



| SQUARE METER QUADRANT SAMPLE                               |                                               |                   |                                                               |                                                    |  |  |
|------------------------------------------------------------|-----------------------------------------------|-------------------|---------------------------------------------------------------|----------------------------------------------------|--|--|
| Study Area: E                                              | 8                                             |                   | Sample No: 2                                                  |                                                    |  |  |
| Location:<br>Oyster Area:<br>Parish/County:<br>Depth (ft): | Escambia Ba<br>Pensacola B<br>Escambia<br>9.4 | ay<br>ay System   | Collection Method:<br>Sample Date:<br>Latitude:<br>Longitude: | Scuba Diver<br>7/21/2021<br>30°29.986<br>87°06.509 |  |  |
| SOM #2 Boo                                                 | kat Dhata                                     | and the second of |                                                               |                                                    |  |  |
| Picture Date:                                              | 7/21/2021                                     |                   |                                                               |                                                    |  |  |
|                                                            |                                               |                   | ESCAMBIA BA9<br>AREA EB<br>Julig 123<br>2                     |                                                    |  |  |
| SQM #2 Tak                                                 | ble Photo                                     |                   |                                                               |                                                    |  |  |
| Picture Date:                                              | 7/21/2021                                     |                   |                                                               |                                                    |  |  |
| SQM #2 Oys<br>Picture Date:                                | ter Photo<br>7/21/2021                        |                   |                                                               |                                                    |  |  |
|                                                            |                                               |                   | ESCAMBIA DAY<br>AREA EB<br>21 July 221<br>2                   |                                                    |  |  |
| SQM #2 Bo                                                  | x Photo                                       | 5                 |                                                               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1              |  |  |
|                                                            |                                               |                   | REA EB<br>21 JULY 22<br>21 JULY 22                            |                                                    |  |  |

| SQUARE METER QUADRANT SAMPLE                               |                                                 |               |                                                              |                                                      |  |  |
|------------------------------------------------------------|-------------------------------------------------|---------------|--------------------------------------------------------------|------------------------------------------------------|--|--|
| Study Area: E8                                             |                                                 |               | Sample No:                                                   | 3                                                    |  |  |
| Location:<br>Oyster Area:<br>Parish/County:<br>Depth (ft): | Escambia Bay<br>Pensacola Ba<br>Escambia<br>9.4 | /<br>y System | Collection Method<br>Sample Date:<br>Latitude:<br>Longitude: | : Scuba Diver<br>7/21/2021<br>30°29.986<br>87°06.509 |  |  |
| SOM #2 Back                                                | ot Photo                                        | · Allow       |                                                              | Chaile 1-                                            |  |  |
| Picture Date:                                              | 7/21/2021                                       | 1198          | ESCATIBIA BAY                                                | HIT                                                  |  |  |
| SQM #3 Table<br>Picture Date:                              | e Photo<br>7/21/2021                            |               | AREA EB<br>July '21                                          |                                                      |  |  |
| SQM #3 Oyste                                               | er Photo                                        |               |                                                              |                                                      |  |  |
| SQM #3 Box                                                 | Photo                                           |               | AREA EB<br>21 July 21                                        |                                                      |  |  |
| Picture Date:                                              | 7/21/2021                                       |               | ESCAMBIA BAY<br>AREA ES<br>21 July 21                        | 3                                                    |  |  |

|                   |                               | SQU                                   | ARE METER        |          | ANT SAMP                | LE                    |                |
|-------------------|-------------------------------|---------------------------------------|------------------|----------|-------------------------|-----------------------|----------------|
| Stı               | ıdy Area:                     | E8                                    |                  |          | Ş                       | Sample No:            | 1              |
| Oys<br>Loc<br>Cou | ster Area:<br>ation:<br>ınty: | Pensacola E<br>Escambia B<br>Escambia | Bay System<br>ay |          |                         | Sample Date:          | 7/22/2021      |
|                   | Shell length<br>(mm)          | Live                                  | Recent Dead      | Old Dead | % Frequency             | % Recent<br>Mortality | % Mortality    |
|                   | 0 0-4                         | 1                                     |                  |          | 2.78%                   | 0.00%                 | 0.00%          |
| at                | 1 5-9                         | 8                                     |                  |          | 22.22%                  | 0.00%                 | 0.00%          |
| Sp                | 2 10-14                       | 3                                     | _                |          | 8.33%                   | 0.00%                 | 0.00%          |
|                   | 3 15-19                       | 5                                     | 1                | 1        | 10 449/                 | 16 67%                | 29 570/        |
|                   | 4 20-24<br>5 25-29            | 2                                     | 1                | I        | 19.44 <i>%</i><br>5.56% | 0.00%                 | 28.37%         |
|                   | 6 30-34                       | 4                                     |                  | 1        | 13,89%                  | 0.00%                 | 20.00%         |
|                   | 7 35-39                       | 1                                     |                  | -        | 2.78%                   | 0.00%                 | 0.00%          |
|                   | 8 40-44                       |                                       |                  | 1        | 2.78%                   |                       | 100.00%        |
| ed                | 9 45-49                       |                                       |                  | 2        | 5.56%                   |                       | 100.00%        |
| Se                | 10 50-54                      |                                       |                  |          |                         |                       |                |
|                   | 11 55-59                      |                                       |                  |          |                         |                       |                |
|                   | 12 60-64                      |                                       |                  |          | 0 00/                   |                       |                |
|                   | 13 65-69                      | 1                                     |                  | 1        | 2.78%                   | 0.00%                 | 100.00%        |
|                   | 14 70-74                      | 1                                     |                  |          | 2.78%                   | 0.00%                 | 0.00%          |
|                   | 16 80-84                      |                                       |                  |          | 2.7070                  | 0.00 /8               | 0.0078         |
|                   | 17 85-89                      | 1                                     |                  |          | 2.78%                   | 0.00%                 | 0.00%          |
|                   | 18 90-94                      | 1                                     |                  |          | 2.78%                   | 0.00%                 | 0.00%          |
|                   | 19 95-99                      | 1                                     |                  |          | 2.78%                   | 0.00%                 | 0.00%          |
| сk                | 20 100-104                    |                                       |                  |          |                         |                       |                |
| Sa                | 21 105-109                    |                                       |                  |          |                         |                       |                |
|                   | 22 110-114                    |                                       |                  |          |                         |                       |                |
|                   | 23 115-119                    |                                       |                  |          | -                       |                       |                |
|                   | 24 120-124                    |                                       |                  |          |                         |                       |                |
|                   | 25 125-129                    |                                       |                  |          |                         |                       |                |
|                   | Totals                        | 29                                    | 1                | 6        | 100.00%                 | 3.33%                 | 19.44%         |
|                   |                               |                                       | OVSTER S         |          |                         |                       |                |
|                   | 1                             | 8 -                                   |                  |          |                         | _                     | Live           |
|                   | 1                             | 6                                     |                  |          |                         |                       | Recent<br>Dead |
|                   | 1                             | .4                                    |                  |          |                         |                       | ■Old Dead      |
|                   | -                             |                                       |                  |          |                         |                       |                |
|                   | L                             | 2                                     |                  |          |                         |                       |                |
|                   | :                             | 10                                    |                  |          |                         |                       |                |
|                   |                               | 8                                     |                  |          |                         |                       |                |
|                   |                               | 0                                     |                  |          |                         |                       |                |
|                   |                               | 6                                     |                  |          |                         |                       |                |
| 1                 |                               | 4                                     |                  |          |                         |                       |                |
|                   |                               | 2                                     |                  |          |                         |                       |                |
| 1                 |                               |                                       |                  |          |                         | Old Dead              |                |
|                   |                               | 0                                     |                  |          |                         | Recent Dead           |                |
| 1                 |                               | 0 - 24 mm S                           | pat              |          |                         | ive                   |                |
|                   |                               |                                       | 25-74 mm         | Seed     |                         |                       |                |
|                   |                               |                                       |                  | >        | 74 mm Sack              |                       |                |
|                   |                               |                                       |                  |          |                         |                       |                |
|                   |                               |                                       |                  |          |                         |                       |                |

|                    | SQUARE METER QUADRANT SAMPLE  |                                       |                  |             |             |                       |                |  |  |
|--------------------|-------------------------------|---------------------------------------|------------------|-------------|-------------|-----------------------|----------------|--|--|
| Stu                | ıdy Area:                     | E8                                    |                  |             | e,          | Sample No:            | 2              |  |  |
| Oys<br>Loca<br>Cou | iter Area:<br>ation:<br>inty: | Pensacola E<br>Escambia B<br>Escambia | Bay System<br>ay |             |             | Sample Date:          | 7/22/2021      |  |  |
|                    | Shell length<br>(mm)          | Live                                  | Recent Dead      | Old Dead    | % Frequency | % Recent<br>Mortality | % Mortality    |  |  |
|                    | 0 0-4                         | 2                                     |                  |             | 5.56%       | 0.00%                 | 0.00%          |  |  |
| at                 | 1 5-9                         | 4                                     |                  | 1           | 13.89%      | 0.00%                 | 20.00%         |  |  |
| Spi                | 2 10-14                       | 3                                     |                  | 1           | 11.11%      | 0.00%                 | 25.00%         |  |  |
|                    | 3 15-19                       | 4                                     |                  |             | 11.11%      | 0.00%                 | 0.00%          |  |  |
|                    | 4 20-24                       | 8                                     | 1                |             | 25.00%      | 11.11%                | 11.11%         |  |  |
|                    | 5 25-29                       | 4                                     | _                | 4           | 11.11%      | 0.00%                 | 0.00%          |  |  |
|                    | 6 30-34                       | 4                                     | _                | 1           | 2.78%       | 0.000/                | 100.00%        |  |  |
|                    | 7 35-39                       | 1                                     |                  |             | 2.78%       | 0.00%                 | 0.00%          |  |  |
| 5                  | 8 40-44                       |                                       |                  |             |             |                       |                |  |  |
| ee                 | 9 45-49                       | -                                     | +                | 2           | 5 56%       |                       | 100.00%        |  |  |
| S                  | 10 50-54                      | 1                                     |                  | 2           | 2 78%       | 0.00%                 | 0.00%          |  |  |
|                    | 12 60-64                      | 1                                     |                  |             | 2.7070      | 0.00 %                | 0.0078         |  |  |
|                    | 13 65-69                      |                                       |                  |             |             |                       |                |  |  |
|                    | 14 70-74                      |                                       |                  |             |             |                       |                |  |  |
|                    | 15 75-79                      |                                       |                  |             |             |                       |                |  |  |
|                    | 16 80-84                      | 1                                     |                  | 1           | 5.56%       | 0.00%                 | 50.00%         |  |  |
|                    | 17 85-89                      |                                       |                  |             |             |                       |                |  |  |
|                    | 18 90-94                      | 1                                     |                  |             | 2.78%       | 0.00%                 | 0.00%          |  |  |
|                    | 19 95-99                      |                                       |                  |             |             |                       |                |  |  |
| ÷                  | 20 100-104                    |                                       |                  |             |             |                       |                |  |  |
| Sa                 | 21 105-109                    |                                       |                  |             |             |                       |                |  |  |
|                    | 22 110-114                    |                                       |                  |             |             |                       |                |  |  |
|                    | 23 115-119                    |                                       |                  |             |             |                       |                |  |  |
|                    | 24 120-124                    |                                       |                  |             |             |                       |                |  |  |
|                    | 25 125-129                    |                                       |                  |             |             |                       |                |  |  |
|                    | 26 >130                       |                                       |                  |             |             |                       |                |  |  |
|                    | Totals                        | 29                                    | 1                | 6           | 100.00%     | 3.33%                 | 19.44%         |  |  |
|                    |                               |                                       | OYSTER S         | IZE DISTRIE | BUTION      |                       |                |  |  |
|                    | 2!                            | 5 1                                   |                  |             |             |                       | Live           |  |  |
|                    | 2                             | 0                                     |                  |             |             |                       | Recent<br>Dead |  |  |
|                    |                               | -                                     |                  |             |             |                       | ■Old Dead      |  |  |
|                    | 1                             | 5                                     |                  |             |             |                       |                |  |  |
|                    |                               |                                       |                  |             |             |                       |                |  |  |
|                    | 1                             |                                       |                  |             |             |                       |                |  |  |
|                    | -                             | .0                                    |                  |             |             |                       |                |  |  |
|                    |                               |                                       |                  |             |             |                       |                |  |  |
|                    |                               | 5                                     |                  |             |             |                       |                |  |  |
|                    |                               | 0                                     |                  |             |             | Old Dead              |                |  |  |
| 1                  |                               | 0 - 24                                |                  |             |             | Recent Dead           |                |  |  |
|                    |                               | 0 - 24<br>mm                          | 25-74            | 1           | Li          | ve                    |                |  |  |
| 1                  |                               | Spat                                  | mm               |             | >74 mm      |                       |                |  |  |
| 1                  |                               |                                       | Seed             |             | Sack        |                       |                |  |  |
|                    |                               |                                       |                  |             |             |                       |                |  |  |
|                    |                               |                                       |                  |             |             |                       |                |  |  |

|                    | SQUARE METER QUADRANT SAMPLE |                                       |                  |             |             |                       |                |  |  |
|--------------------|------------------------------|---------------------------------------|------------------|-------------|-------------|-----------------------|----------------|--|--|
| Stı                | idy Area:                    | E8                                    |                  |             | 0,          | Sample No:            | 3              |  |  |
| Oys<br>Loc:<br>Cou | ter Area:<br>ation:<br>nty:  | Pensacola E<br>Escambia B<br>Escambia | 3ay System<br>ay |             |             | Sample Date:          | 7/22/2021      |  |  |
|                    | Shell length<br>(mm)         | Live                                  | Recent Dead      | Old Dead    | % Frequency | % Recent<br>Mortality | % Mortality    |  |  |
|                    | 0 0-4                        |                                       |                  |             | 0.000/      | 0.000/                |                |  |  |
| at                 | 1 5-9                        | 6                                     |                  |             | 9.68%       | 0.00%                 | 0.00%          |  |  |
| Sp                 | 2 10-14                      | 9                                     |                  |             | 14.52%      | 0.00%                 | 0.00%          |  |  |
|                    | 4 20-24                      | 11                                    |                  |             | 17 74%      | 0.00%                 | 0.00%          |  |  |
|                    | 5 25-29                      | 14                                    |                  | 1           | 24.19%      | 0.00%                 | 6.67%          |  |  |
|                    | 6 30-34                      | 5                                     |                  | 1           | 9.68%       | 0.00%                 | 16.67%         |  |  |
|                    | 7 35-39                      | 4                                     |                  |             | 6.45%       | 0.00%                 | 0.00%          |  |  |
|                    | 8 40-44                      |                                       |                  | 2           | 3.23%       |                       | 100.00%        |  |  |
| ed                 | 9 45-49                      |                                       |                  |             |             |                       |                |  |  |
| Se                 | 10 50-54                     |                                       |                  | 2           | 3.23%       |                       | 100.00%        |  |  |
|                    | 11 55-59                     |                                       |                  |             |             |                       |                |  |  |
|                    | 12 60-64                     |                                       |                  |             |             |                       |                |  |  |
|                    | 13 65-69                     | 1                                     |                  |             | 1 61%       | 0.00%                 | 0.00%          |  |  |
|                    | 15 75-79                     |                                       |                  |             | 1.0176      | 0.00%                 | 0.0070         |  |  |
|                    | 16 80-84                     |                                       |                  |             |             |                       |                |  |  |
|                    | 17 85-89                     |                                       |                  |             |             |                       |                |  |  |
|                    | 18 90-94                     | 1                                     |                  |             | 1.61%       | 0.00%                 | 0.00%          |  |  |
|                    | 19 95-99                     |                                       |                  |             |             |                       |                |  |  |
| ack                | 20 100-104                   |                                       |                  |             |             |                       |                |  |  |
| ŝ                  | 21 105-109                   |                                       |                  |             |             |                       |                |  |  |
|                    | 22 110-114                   |                                       |                  |             |             |                       |                |  |  |
|                    | 23 115-119                   |                                       |                  |             |             |                       |                |  |  |
|                    | 24 120-124                   |                                       |                  |             |             |                       |                |  |  |
|                    | 26 >130                      |                                       |                  |             |             |                       |                |  |  |
|                    | Totals                       | 56                                    | 0                | 6           | 100.00%     | 0.00%                 | 9.68%          |  |  |
|                    |                              | -                                     | OYSTER S         | IZE DISTRIE | UTION       |                       |                |  |  |
|                    |                              |                                       |                  |             |             |                       |                |  |  |
|                    | 3                            | 35                                    |                  |             |             |                       | Live           |  |  |
|                    |                              | 30                                    |                  |             |             |                       | Recent<br>Dead |  |  |
|                    |                              | 25                                    |                  |             |             |                       | ■Old Dead      |  |  |
|                    |                              | 20                                    |                  |             |             |                       |                |  |  |
|                    |                              | 20                                    |                  |             |             |                       |                |  |  |
|                    |                              | 15                                    |                  |             |             |                       |                |  |  |
|                    |                              |                                       |                  |             |             |                       |                |  |  |
|                    |                              | 10                                    |                  |             |             |                       |                |  |  |
|                    |                              |                                       |                  |             |             |                       |                |  |  |
|                    |                              | 5                                     | -                |             |             |                       |                |  |  |
|                    |                              |                                       |                  |             |             | / Old Dead            |                |  |  |
|                    |                              | 0 24                                  |                  |             |             | ' Recent Dead         |                |  |  |
|                    |                              | 0 - 24<br>mm                          | 25-7             | 4           |             | live                  |                |  |  |
|                    |                              | Spat                                  | mm               | 1           | >74 mm ٰ    |                       |                |  |  |
|                    |                              |                                       | See              | d           | Sack        |                       |                |  |  |
|                    |                              |                                       |                  |             |             |                       |                |  |  |
|                    |                              |                                       |                  |             |             |                       |                |  |  |

# Study Area: E8

## Acres in Study Area: 300.1 Acres with Oysters: 64.2

Oyster Area: Location: County:

rea: **Pensacola Bay System** Escambia Bay Escambia

Sample Date: 7/22/2021

### CULTCH/MATERIALS PRESENT

| Material               | Sample 1 | Sample 2 | Sample 3 |
|------------------------|----------|----------|----------|
| Crush Concrete         | 0        | 0        | 0        |
| Limestone              | Х        | Х        | Х        |
| Oyster Shell Cultch    | Х        | Х        | Х        |
| Oyster Shell Fragments | Х        | Х        | Х        |
| Oyster Shell Rubble    | Х        | Х        | Х        |
| Oyster Clusters        | Х        | Х        | Х        |
| Oyster Singles         | Х        | Х        | Х        |
| Broken Oyster Shells   | 0        | 0        | 0        |
| Clam Shells            | Х        | Х        | Х        |
| Marsh Debris           | 0        | 0        | 0        |
| H2S Odor               | 0        | 0        | 0        |

### **OYSTER REEF ORGANISMS - PRESENT**

| Species        | Sample 1 | Sample 2 | Sample 3 |
|----------------|----------|----------|----------|
| Barnacles      | Х        | Х        | Х        |
| Brittle Stars  | 0        | 0        | 0        |
| Sea Squirts    | 0        | 0        | 0        |
| Slipper Shells | 0        | 0        | 0        |
| Bryozoan       | 0        | 0        | 0        |

|             |                | OY  | STER REEF ORGAN | NISMS - COUNT |                    |    |
|-------------|----------------|-----|-----------------|---------------|--------------------|----|
| _           |                |     |                 |               |                    |    |
|             | Materia        |     | Sample 1        | Sample 2      | Sample 3           |    |
|             | Oyster Dr      | lls | 1               | 1             | 1                  |    |
|             | Hermit Cra     | ıbs | 0               | 0             | 0                  |    |
|             | Mud Crat       | S   | 0               | 0             | 1                  |    |
|             | Mussels        |     | 2               | 3             | 7                  |    |
|             | Rangia         |     | 0               | 0             | 0                  |    |
|             | Materia        |     | Total Count     |               |                    |    |
|             | Oyster Dr      | lls | 3               |               |                    |    |
|             | Hermit Cra     | ıbs | 0               |               |                    |    |
|             | Mud Crat       | S   | 1               |               |                    |    |
|             | Mussels        |     | 12              |               |                    |    |
|             | Rangia         |     | 0               |               |                    |    |
|             |                |     |                 |               |                    |    |
|             |                |     | OYSTER SHELL    | COLOR         |                    |    |
|             |                |     |                 |               |                    |    |
| Samp        | le 1           |     | Sample          | 2             | Sample 3           |    |
| Shell Color | %              |     | Shell Color     | %             | Shell Color        | %  |
| Brown-Green | 0              |     | Brown-Green     | 0             | Brown-Green        | 0  |
| Brown       | 40             |     | Brown           | 10            | Brown              | 10 |
| Black       | 0              |     | Black           | 0             | Black              | 0  |
| Gray        | 60             |     | Gray            | 90            | Gray               | 90 |
|             |                | ]   | 0.4471.5        |               |                    |    |
| SAME        | LE 1           |     | SAMPLE          | 2             | SAMPLE 3           |    |
| 60%         | %<br>40%<br>0% |     | 0%10<br>90%     | %<br>0%       | 0%10%<br>0%<br>90% |    |
| Brown-Green | Brown          |     | Brown-Green     | Brown         | Brown-Green Brow   | vn |
| Black       | Gray           |     | віаск           | Gray          | Black Gray         | /  |

# **OYSTER DENSITIES**

# Study Area: E8

# Acres in Study: 300.1

Acres with Oyster Reef: 64.2

| Oyster Area:<br>Location:<br>County: | Pensacola Ba<br>Escambia Ba<br>Escambia | ay System<br>y |                           |                             |            |                            | Sample Date:                  | 7/22/2021          |
|--------------------------------------|-----------------------------------------|----------------|---------------------------|-----------------------------|------------|----------------------------|-------------------------------|--------------------|
|                                      | O                                       | ysters in Samp | ole                       |                             | Ś          | Sacks Per Acr              | e                             |                    |
| Sample #                             | <24mm                                   | 25-74          | >75mm                     | All sizes                   | Disc       | ounted for Morta           | lities                        | Total              |
|                                      | spat                                    | seed           | sack                      | 180oys/sack                 | spat(10%)  | seed(50%)                  | sack                          |                    |
|                                      |                                         |                |                           |                             |            |                            |                               |                    |
| 1                                    | 17                                      | 8              | 4                         | 652                         | 38         | 90                         | 90                            | 218                |
| 2                                    | 21                                      | 6              | 2                         | 652                         | 47         | 67                         | 45                            | 160                |
| 3                                    | 31                                      | 24             | 1                         | 1259                        | 70         | 270                        | 22                            | 362                |
|                                      |                                         |                |                           |                             |            |                            |                               |                    |
| TOTAL                                | 69                                      | 38             | 7                         | 2563                        | 155        | 427                        | 157                           | 740                |
|                                      |                                         |                |                           |                             |            |                            |                               |                    |
| AVERAGE                              | 23.0                                    | 12.7           | 2.3                       | 854.2                       | 51.7       | 142.4                      | 52.5                          | 246.5              |
|                                      |                                         |                |                           |                             |            |                            |                               |                    |
|                                      |                                         | E              | STIMATED P                | OTENTIAL ST.                | ANDING CRC | )P                         |                               |                    |
| Average Sac                          | ks Per Acre                             |                | No. of Acres H            | lolding Oysters             |            | Estimated No<br>Sacks in S | o. of Potential<br>Study Area |                    |
| 24                                   | 7                                       | Х              | 64                        | 4.2                         | =          | 158                        | 327                           |                    |
| from s<br>meter s                    | quare<br>amples                         |                | determined fr<br>scan son | om poling/side<br>ar survey |            |                            |                               |                    |
|                                      |                                         |                |                           |                             |            |                            |                               |                    |
|                                      |                                         | S              | QUARE MET                 | ER SAMPLE I                 | MORTALITIE | S                          |                               |                    |
|                                      |                                         |                |                           |                             |            |                            |                               |                    |
| Sample #                             |                                         | # Live Oysters | # Recent<br>Boxes         | # Old Boxes                 |            | Recent<br>Mortality        |                               | Total Mortality    |
| 1                                    |                                         | 29             | 1                         | 6                           |            | 3%                         |                               | 19%                |
| 2                                    |                                         | 29             | 1                         | 6                           |            | 3%                         |                               | 19%                |
| 3                                    |                                         | 56             | 0                         | 6                           |            | 0%                         |                               | 10%                |
|                                      |                                         |                |                           | •                           |            |                            |                               |                    |
| Total                                |                                         | 114            | 2                         | 18                          |            | Recent<br>Mortality        |                               | Total<br>Mortality |
| Average                              |                                         | 38.0           | 0.7                       | 6.0                         |            | 2.2%                       |                               | 16%                |

# SQUARE METER QUADRANT SAMPLE

| Study Area: E  | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample No: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Location:      | Pensacola Bay System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Collection Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Scuba Diver          |
| Oyster Area:   | Escambia Bay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7/27/2021            |
| Parish/County: | Escambia County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Latitude:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30°29.711            |
| Depth (ft):    | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Longitude:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87°07.070            |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| SQM #1 Bas     | sket Photo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| Picture Date:  | //2//2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LETAN.               |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AREA E9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | APP C                |
|                | XIIIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27 July 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A MESS               |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A LESS COMMENTED DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | North Contraction    |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A RIA NOV            |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A G TO AUTON         |
| SQM #1 Tal     | ble Photo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| Picture Date   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                    |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Escensin Say                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · ·              |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 122 100              |
|                | 1 in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T.                   |
| SOM #1 . Ov    | otor Photo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| Picture Date   | · 7/27/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Escamora Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                    |
|                | . //2//2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Area Eg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
|                | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27 July 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E. C. State          |
|                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                | the state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , 2 - ()             |
|                | the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1. 1 × 1/2 / 1 × 1 × 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A.t.                 |
|                | the set of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C BARRIER C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contraction of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e T                  |
|                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and the second s |                      |
|                | Barra and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a sea and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , that the safe is a |

| SQUARE METER QUADRANT SAMPLE |                                      |                                    |                          |  |  |  |  |
|------------------------------|--------------------------------------|------------------------------------|--------------------------|--|--|--|--|
| Study Area: E9 Sample No: 2  |                                      |                                    |                          |  |  |  |  |
| Location:<br>Ovster Area:    | Pensacola Bay System<br>Escambia Bay | Collection Method:<br>Sample Date: | Scuba Diver<br>7/27/2021 |  |  |  |  |
| Parish/County:               | Escambia County                      | Latitude:                          | 30°29.711                |  |  |  |  |
| Depth (ft):                  | 9.0                                  | Longitude:                         | 87°07.070                |  |  |  |  |
| SQM #2 Bas                   | sket Photo                           |                                    | 111116                   |  |  |  |  |
|                              |                                      | AREA EQ<br>27 John 121             |                          |  |  |  |  |
|                              |                                      |                                    |                          |  |  |  |  |
|                              |                                      |                                    |                          |  |  |  |  |
|                              |                                      |                                    |                          |  |  |  |  |
|                              |                                      |                                    |                          |  |  |  |  |
| SOM #2 Ta                    | ble Photo                            |                                    |                          |  |  |  |  |
| Picture Date                 | : 7/27/2021                          |                                    |                          |  |  |  |  |
|                              |                                      |                                    |                          |  |  |  |  |
|                              |                                      | Ensatis 64<br>ens E1<br>27 Jun 21  |                          |  |  |  |  |
|                              |                                      |                                    |                          |  |  |  |  |
|                              |                                      |                                    |                          |  |  |  |  |
|                              |                                      |                                    |                          |  |  |  |  |
| SQM #2 Oys<br>Picture Date   | ster Photo                           |                                    |                          |  |  |  |  |
|                              |                                      | Escambia Bay<br>Area Eg            | 7                        |  |  |  |  |
|                              |                                      | 27 July 21                         | -                        |  |  |  |  |
|                              |                                      |                                    |                          |  |  |  |  |
|                              |                                      |                                    |                          |  |  |  |  |
|                              | 24                                   |                                    |                          |  |  |  |  |
|                              |                                      |                                    |                          |  |  |  |  |

| SQUARE METER QUADRANT SAMPLE                |                                                         |                                                 |                                       |  |  |  |  |  |
|---------------------------------------------|---------------------------------------------------------|-------------------------------------------------|---------------------------------------|--|--|--|--|--|
| Study Area: E9 Sample No: 3                 |                                                         |                                                 |                                       |  |  |  |  |  |
| Location:<br>Oyster Area:<br>Parish/County: | Pensacola Bay System<br>Escambia Bay<br>Escambia County | Collection Method:<br>Sample Date:<br>Latitude: | Scuba Diver<br>7/27/2021<br>30°29.711 |  |  |  |  |  |
| Depth (ft):                                 | 9.0                                                     | Longitude:                                      | 87°07.070                             |  |  |  |  |  |
| SQM #3 Bas<br>Picture Date:                 | sket Photo<br>7/27/2021                                 | EUCAMBIA BAY<br>AREA E9<br>37 Jong 121          |                                       |  |  |  |  |  |
| SQM #3 Tai<br>Picture Date                  | ble Photo<br>: 7/27/2021                                |                                                 |                                       |  |  |  |  |  |
| SQM #3 Oys<br>Picture Date                  | ster Photo<br>: 7/27/2021                               | Escambia Bay<br>Area Eg<br>27 July 21           | 3.                                    |  |  |  |  |  |



Figure 94. Water Bottom Image Area E9







# Study Area: E9

### Acres in Study Area:97.9 Acres with Oysters: 28.2

Oyster Area: Location:

a: **Pensacola Bay System** Escambia Bay Escambia

Sample Date: 7/27/2021

| ounty: | Escambia               |                  |          |          |
|--------|------------------------|------------------|----------|----------|
|        | CU                     | LTCH/MATERIALS I | PRESENT  |          |
|        | Material               | Sample 1         | Sample 2 | Sample 3 |
|        | Crush Concrete         | 0                | 0        | 0        |
|        | Limestone              | 0                | 0        | 0        |
|        | Oyster Shell Cultch    | Х                | Х        | Х        |
|        | Oyster Shell Fragments | Х                | Х        | Х        |
|        | Oyster Shell Rubble    | 0                | Х        | Х        |
|        | Oyster Clusters        | 0                | Х        | 0        |
|        | Oyster Singles         | Х                | Х        | 0        |
|        | Broken Oyster Shells   | 0                | 0        | 0        |
|        | Clam Shells            | 0                | 0        | 0        |
|        | Marsh Debris           | 0                | 0        | 0        |
|        | H2S Odor               | 0                | 0        | 0        |

### **OYSTER REEF ORGANISMS - PRESENT**

| Species        | Sample 1 | Sample 2 | Sample 3 |
|----------------|----------|----------|----------|
| Barnacles      | Х        | Х        | Х        |
| Brittle Stars  | 0        | 0        | 0        |
| Sea Squirts    | 0        | 0        | 0        |
| Slipper Shells | 0        | 0        | 0        |
| Bryozoan       | 0        | 0        | 0        |

| Material      | Sample 1    | Sample 2 | Sample 3 |
|---------------|-------------|----------|----------|
| Oyster Drills | 3           | 0        | 0        |
| Hermit Crabs  | 0           | 0        | 0        |
| Mud Crabs     | 0           | 0        | 0        |
| Mussels       | 21          | 6        | 3        |
| Rangia        | 0           | 0        | 0        |
| Material      | Total Count |          |          |
| Oyster Drills | 3           |          |          |
| Hermit Crabs  | 0           |          |          |
| Mud Crabs     | 0           |          |          |
| Mussels       | 30          |          |          |
| Rangia        | 0           |          |          |

# Sample 1Shell Color%Brown-Green5Brown10Black0Gray85



### OYSTER SHELL COLOR

| Sample 2    |    |  |  |  |
|-------------|----|--|--|--|
| Shell Color | %  |  |  |  |
| Brown-Green | 0  |  |  |  |
| Brown       | 10 |  |  |  |
| Black       | 0  |  |  |  |
| Gray        | 90 |  |  |  |



| Sample 3    |    |  |  |  |
|-------------|----|--|--|--|
| Shell Color | %  |  |  |  |
| Brown-Green | 0  |  |  |  |
| Brown       | 10 |  |  |  |
| Black       | 0  |  |  |  |
| Gray        | 90 |  |  |  |
|             | -  |  |  |  |



# **OYSTER DENSITIES**

# Study Area: E9

# Acres in Study: 97.9

Acres with Oyster Reef: 28.2

| Oyster Area:<br>Location:<br>County: | Pensacola B<br>Escambia Ba<br>Escambia | ay System<br>ay |                                                  |             |                            |                               | Sample Date: | 7/27/2021       |
|--------------------------------------|----------------------------------------|-----------------|--------------------------------------------------|-------------|----------------------------|-------------------------------|--------------|-----------------|
|                                      | Ο                                      | sters in Sam    | ole                                              |             | S                          | Sacks Per Acr                 | е            |                 |
| Sample #                             | <24mm                                  | 25-74           | >75mm All sizes Discounted for M                 |             | ounted for Morta           | talities Total                |              |                 |
|                                      | spat                                   | seed            | sack                                             | 180oys/sack | spat(10%)                  | seed(50%)                     | sack         |                 |
|                                      |                                        |                 |                                                  |             |                            |                               |              |                 |
| 1                                    | 4                                      | 0               | 0                                                | 90          | 9                          | 0                             | 0            | 9               |
| 2                                    | 4                                      | 0               | 0                                                | 90          | 9                          | 0                             | 0            | 9               |
| 3                                    | 1                                      | 0               | 0                                                | 22          | 2                          | 0                             | 0            | 2               |
|                                      |                                        |                 |                                                  |             |                            |                               |              |                 |
| TOTAL                                | 9                                      | 0               | 0                                                | 202         | 20                         | 0                             | 0            | 20              |
|                                      |                                        |                 |                                                  |             |                            |                               |              |                 |
| AVERAGE                              | 3.0                                    | 0.0             | 0.0                                              | 67.4        | 6.7                        | 0.0                           | 0.0          | 6.7             |
|                                      |                                        |                 |                                                  |             |                            |                               |              |                 |
|                                      |                                        | E               | STIMATED PO                                      | OTENTIAL ST | ANDING CRC                 | P                             |              |                 |
| Average Sacks Per Acre No. of Acre   |                                        | No. of Acres H  | lolding Oysters                                  |             | Estimated No<br>Sacks in S | o. of Potential<br>Study Area |              |                 |
| 7                                    |                                        | х               | 28                                               | 3.2         | =                          | 19                            | 90           |                 |
| from square<br>meter samples         |                                        |                 | determined from poling/side<br>scan sonar survey |             |                            |                               |              |                 |
|                                      |                                        |                 |                                                  |             |                            |                               |              |                 |
|                                      |                                        | S               | QUARE MET                                        | ER SAMPLE   | MORTALITIES                | 5                             |              |                 |
|                                      |                                        |                 |                                                  |             |                            |                               |              |                 |
| Sample #                             |                                        | # Live Oysters  | # Recent<br>Boxes                                | # Old Boxes |                            | Recent<br>Mortality           |              | Total Mortality |
| 1                                    |                                        | 4               | 0                                                | 0           |                            | 0%                            |              | 0%              |
| 2                                    |                                        | 4               | 0                                                | 0           |                            | 0%                            |              | 0%              |
| 3                                    |                                        | 1               | 0                                                | 0           |                            | 0%                            |              | 0%              |
|                                      |                                        |                 |                                                  |             |                            |                               |              |                 |
| Total                                |                                        | 0               | 0                                                | 0           |                            | Recent                        |              | Total           |
| Total                                |                                        | 9               | U                                                | 0           |                            | Mortality                     |              | Mortality       |
| Average                              |                                        | 3.0             | 0.0                                              | 0.0         |                            | 0.0%                          |              | 0%              |

| SQUARE METER QUADRANT SAMPLE                               |                                                                |                                                               |                                                    |  |  |  |
|------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|--|--|--|
| Study Area: E                                              | 15                                                             | Sample No: 2                                                  |                                                    |  |  |  |
| Location:<br>Oyster Area:<br>Parish/County:<br>Depth (ft): | Escambia Bay<br>Pensacola Bay System<br>Escambia County<br>9.7 | Collection Method:<br>Sample Date:<br>Latitude:<br>Longitude: | Scuba Diver<br>7/28/2021<br>30°30.324<br>87°06.526 |  |  |  |
| SQM #2 Bas<br>Picture Date:                                | eket Photo<br>7/28/2021                                        | Escaria Ry<br>Area 15<br>28 July 2                            |                                                    |  |  |  |
| SQM #2 Tal<br>Picture Date                                 | ble Photo<br>: 7/28/2021                                       |                                                               |                                                    |  |  |  |
| SQM #2 Bo<br>Picture Date                                  | Dx Photo         : 7/28/2021                                   | Escambia Bay<br>Area 15<br>28 July 21                         |                                                    |  |  |  |
|                                                            | •                                                              |                                                               | · · ·                                              |  |  |  |

| SQUARE METER QUADRANT SAMPLE                               |                                                                |                                                               |                                                    |  |  |  |
|------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|--|--|--|
| Study Area: E                                              | 15                                                             | Sample No: 3                                                  |                                                    |  |  |  |
| Location:<br>Oyster Area:<br>Parish/County:<br>Depth (ft): | Escambia Bay<br>Pensacola Bay System<br>Escambia County<br>9.7 | Collection Method:<br>Sample Date:<br>Latitude:<br>Longitude: | Scuba Diver<br>7/28/2021<br>30°30.324<br>87°06.526 |  |  |  |
| SQM #3 Bas<br>Picture Date:                                | sket Photo<br>7/28/2021                                        | Escambia Bay<br>Area 15<br>28 July 21                         |                                                    |  |  |  |
| SQM #3 Tal<br>Picture Date                                 | ble Photo<br>: 7/28/2021                                       |                                                               |                                                    |  |  |  |
| SQM #3 Bo<br>Picture Date                                  | DX Photo<br>: 7/28/2021                                        | Escanbia Bay Ba<br>Area 15<br>28 July 21                      |                                                    |  |  |  |



Figure 95. Water Bottom Image Area E15






## Study Area: E15

#### Acres in Study Area:74.1 Acres with Oysters: 9.3

Oyster Area: Location:

Pensacola Bay System Escambia Bay

Escambia

Sample Date: 7/28/2021

| County: | Escambia               |                 |          |          |
|---------|------------------------|-----------------|----------|----------|
|         | CU                     | ILTCH/MATERIALS | PRESENT  |          |
|         | Material               | Sample 1        | Sample 2 | Sample 3 |
|         | Crush Concrete         | 0               | 0        | 0        |
|         | Limestone              | 0               | 0        | 0        |
|         | Oyster Shell Cultch    | Х               | Х        | Х        |
|         | Oyster Shell Fragments | Х               | Х        | Х        |
|         | Oyster Shell Rubble    | Х               | Х        | Х        |
|         | Oyster Clusters        | 0               | 0        | 0        |
|         | Oyster Singles         | Х               | 0        | Х        |
|         | Broken Oyster Shells   | 0               | 0        | 0        |
|         | Clam Shells            | 0               | 0        | 0        |
|         | Marsh Debris           | 0               | 0        | 0        |
|         | H2S Odor               | 0               | 0        | 0        |

#### **OYSTER REEF ORGANISMS - PRESENT**

| Species        | Sample 1 | Sample 2 | Sample 3 |
|----------------|----------|----------|----------|
| Barnacles      | 0        | 0        | 0        |
| Brittle Stars  | 0        | 0        | 0        |
| Sea Squirts    | 0        | 0        | 0        |
| Slipper Shells | 0        | 0        | 0        |
| Bryozoan       | 0        | 0        | 0        |

| Material      | Sample 1    | Sample 2 | Sample 3 |
|---------------|-------------|----------|----------|
| Oyster Drills | 0           | 0        | 0        |
| Hermit Crabs  | 0           | 0        | 0        |
| Mud Crabs     | 0           | 0        | 0        |
| Mussels       | 0           | 0        | 0        |
| Rangia        | 0           | 0        | 0        |
| Material      | Total Count |          |          |
| Oyster Drills | 0           |          |          |
| Hermit Crabs  | 0           |          |          |
| Mud Crabs     | 0           |          |          |
| Mussels       | 0           |          |          |
| Rangia        | 0           |          |          |

#### **OYSTER SHELL COLOR**

| Sample 1    |     |  |  |  |
|-------------|-----|--|--|--|
| Shell Color | %   |  |  |  |
| Brown-Green | 0   |  |  |  |
| Brown       | 0   |  |  |  |
| Black       | 0   |  |  |  |
| Gray        | 100 |  |  |  |
|             | -   |  |  |  |



| Sample 2    |     |  |  |  |
|-------------|-----|--|--|--|
| Shell Color | %   |  |  |  |
| Brown-Green | 0   |  |  |  |
| Brown       | 0   |  |  |  |
| Black       | 0   |  |  |  |
| Grav        | 100 |  |  |  |



| Sample 3    |     |  |  |  |
|-------------|-----|--|--|--|
| Shell Color | %   |  |  |  |
| Brown-Green | 0   |  |  |  |
| Brown       | 0   |  |  |  |
| Black       | 0   |  |  |  |
| Gray        | 100 |  |  |  |



## Study Area: E15

## Acres in Study: 74.1

Acres with Oyster Reef: 9.3

| Oyster Area:<br>Location:<br>County: | Pensacola B<br>Escambia Ba<br>Escambia | ay System<br>ay |                            |                             |            |                            | Sample Date                   | 7/28/2021          |
|--------------------------------------|----------------------------------------|-----------------|----------------------------|-----------------------------|------------|----------------------------|-------------------------------|--------------------|
|                                      | Ο                                      | /sters in Sam   | ole                        |                             | 5          | Sacks Per Acr              | 'e                            |                    |
| Sample #                             | <24mm                                  | 25-74           | >75mm                      | All sizes                   | Disc       | ounted for Morta           | alities                       | Total              |
| -                                    | spat                                   | seed            | sack                       | 180oys/sack                 | spat(10%)  | seed(50%)                  | sack                          |                    |
|                                      |                                        |                 |                            |                             |            |                            |                               |                    |
| 1                                    | 0                                      | 0               | 0                          | 0                           | 0          | 0                          | 0                             | 0                  |
| 2                                    | 0                                      | 0               | 0                          | 0                           | 0          | 0                          | 0                             | 0                  |
| 3                                    | 0                                      | 0               | 0                          | 0                           | 0          | 0                          | 0                             | 0                  |
|                                      |                                        |                 |                            |                             |            |                            |                               |                    |
| TOTAL                                | 0                                      | 0               | 0                          | 0                           | 0          | 0                          | 0                             | 0                  |
|                                      |                                        |                 |                            |                             |            |                            |                               |                    |
| AVERAGE                              | 0.0                                    | 0.0             | 0.0                        | 0.0                         | 0.0        | 0.0                        | 0.0                           | 0.0                |
|                                      |                                        |                 |                            |                             |            |                            |                               |                    |
|                                      |                                        | E               | STIMATED P                 | OTENTIAL ST                 | ANDING CRC | )P                         |                               |                    |
| Average Sac                          | ks Per Acre                            |                 | No. of Acres H             | lolding Oysters             |            | Estimated No<br>Sacks in S | o. of Potential<br>Study Area |                    |
| 0                                    | I                                      | х               | 9                          | .3                          | =          |                            | 0                             |                    |
| from so<br>meter sa                  | quare<br>amples                        |                 | determined fro<br>scan son | om poling/side<br>ar survey |            |                            |                               |                    |
|                                      |                                        |                 |                            |                             |            |                            |                               |                    |
|                                      |                                        | S               | SQUARE MET                 | ER SAMPLE                   | MORTALITIE | S                          |                               |                    |
|                                      |                                        |                 |                            |                             |            |                            | -                             |                    |
| Sample #                             |                                        | # Live Oysters  | # Recent<br>Boxes          | # Old Boxes                 |            | Recent<br>Mortality        |                               | Total Mortality    |
| 1                                    |                                        | 0               | 0                          | 2                           |            | 0%                         |                               | 100%               |
| 2                                    |                                        | 0               | 0                          | 1                           |            | 0%                         |                               | 100%               |
|                                      |                                        |                 |                            |                             |            |                            |                               |                    |
|                                      |                                        |                 |                            |                             |            |                            |                               |                    |
| Total                                |                                        | 0               | 0                          | 3                           |            | Recent<br>Mortality        |                               | Total<br>Mortality |
| Average                              |                                        | 0.0             | 0.0                        | 1.5                         |            | 0.0%                       |                               | 100%               |

# SQUARE METER QUADRANT SAMPLE Study Area: E16 Sample No: 1 Location: Escambia Bay Collection Method: Scale

Location:Escambia BayOyster Area:Pensacola Bay SystemParish/County:Escambia CountyDepth (ft):8.8

Collection Method: Sample Date: Latitude: Longitude: Scuba Diver 7/27/2021 30°30.369' 87°06878'



#### Study Area: E16

Location:Escambia BayOyster Area:Pensacola Bay SystemParish/County:Escambia CountyDepth (ft):8.8

#### Sample No: 2

Collection Method: Sample Date: Latitude: Longitude:

Scuba Diver 7/27/2021 30°30.369' 87°06878'



## SQUARE METER QUADRANT SAMPLE Study Area: E16 Sample No: 3 Location: Escambia Bay Collection Method: Scuba Diver Pensacola Bay System Oyster Area: Sample Date: 7/27/2021 Parish/County: Escambia County Latitude: 30°30.369' Depth (ft): Longitude: 8.8 87°06878' SQM #3 Basket Photo Picture Date: 7/27/2021 Escambia Ba Area E-16 27 July 21 SQM #3 Table Photo Picture Date: 7/27/2021







Study Area: E16

#### Acres in Study Area: 243.9 Acres with Oysters: 13.3

Oyster Area: Location:

Pensacola Bay System Escambia Bay

Sample Date: 7/27/2021

| County: | Escambia               |                |          |          |
|---------|------------------------|----------------|----------|----------|
|         | CU                     | LTCH/MATERIALS | PRESENT  |          |
|         | Material               | Sample 1       | Sample 2 | Sample 3 |
|         | Crush Concrete         | 0              | 0        | 0        |
|         | Limestone              | 0              | 0        | 0        |
|         | Oyster Shell Cultch    | Х              | Х        | Х        |
|         | Oyster Shell Fragments | Х              | Х        | Х        |
|         | Oyster Shell Rubble    | Х              | Х        | Х        |
|         | Oyster Clusters        | 0              | 0        | 0        |
|         | Oyster Singles         | 0              | 0        | 0        |
|         | Broken Oyster Shells   | 0              | 0        | 0        |
|         | Clam Shells            | 0              | 0        | 0        |
|         | Marsh Debris           | 0              | 0        | 0        |
|         | H2S Odor               | 0              | 0        | 0        |

#### **OYSTER REEF ORGANISMS - PRESENT**

| Species        | Sample 1 | Sample 2 | Sample 3 |
|----------------|----------|----------|----------|
| Barnacles      | Х        | 0        | Х        |
| Brittle Stars  | 0        | 0        | 0        |
| Sea Squirts    | 0        | 0        | 0        |
| Slipper Shells | 0        | 0        | 0        |
| Bryozoan       | 0        | 0        | 0        |

| Material      | Sample 1    | Sample 2 | Sample |
|---------------|-------------|----------|--------|
| Oyster Drills | 0           | 0        | 0      |
| Hermit Crabs  | 0           | 0        | 0      |
| Mud Crabs     | 0           | 0        | 0      |
| Mussels       | 5           | 0        | 0      |
| Rangia        | 0           | 0        | 0      |
| Material      | Total Count |          | -      |
| Oyster Drills | 0           |          |        |
| Hermit Crabs  | 0           |          |        |
| Mud Crabs     | 0           |          |        |
| Mussels       | 5           |          |        |
| Rangia        | 0           |          |        |

#### **OYSTER SHELL COLOR**

| Sample 1 |  |  |  |  |
|----------|--|--|--|--|
| %        |  |  |  |  |
| 0        |  |  |  |  |
| 0        |  |  |  |  |
| 0        |  |  |  |  |
| 100      |  |  |  |  |
|          |  |  |  |  |



| Sample 2    |     |  |  |  |
|-------------|-----|--|--|--|
| Shell Color | %   |  |  |  |
| Brown-Green | 0   |  |  |  |
| Brown       | 0   |  |  |  |
| Black       | 0   |  |  |  |
| Grav        | 100 |  |  |  |



| Sample 3 |  |  |  |  |
|----------|--|--|--|--|
| %        |  |  |  |  |
| 0        |  |  |  |  |
| 0        |  |  |  |  |
| 0        |  |  |  |  |
| 100      |  |  |  |  |
|          |  |  |  |  |



## Study Area: E16

## Acres in Study: 243.9

Acres with Oyster Reef: 13.3

| Oyster Area:<br>Location:<br>County: | Pensacola E<br>Escambia B<br>Escambia | 8ay System<br>ay |                            |                             |             |                            | Sample Date                   | : 7/27/2021        |
|--------------------------------------|---------------------------------------|------------------|----------------------------|-----------------------------|-------------|----------------------------|-------------------------------|--------------------|
|                                      | 0                                     | ysters in Samp   | ole                        |                             | S           | acks Per Acr               | e                             |                    |
| Sample #                             | <24mm                                 | 25-74            | >75mm                      | All sizes                   | Disc        | ounted for Morta           | alities                       | Total              |
|                                      | spat                                  | seed             | sack                       | 180oys/sack                 | spat(10%)   | seed(50%)                  | sack                          |                    |
|                                      |                                       |                  |                            |                             |             |                            |                               |                    |
| 1                                    | 0                                     | 0                | 0                          | 0                           | 0           | 0                          | 0                             | 0                  |
| 2                                    | 0                                     | 0                | 0                          | 0                           | 0           | 0                          | 0                             | 0                  |
| 3                                    | 0                                     | 0                | 0                          | 0                           | 0           | 0                          | 0                             | 0                  |
|                                      |                                       |                  |                            |                             |             |                            |                               |                    |
| TOTAL                                | 0                                     | 0                | 0                          | 0                           | 0           | 0                          | 0                             | 0                  |
|                                      |                                       |                  |                            |                             |             |                            |                               |                    |
| AVERAGE                              | 0.0                                   | 0.0              | 0.0                        | 0.0                         | 0.0         | 0.0                        | 0.0                           | 0.0                |
|                                      |                                       |                  |                            |                             |             |                            |                               |                    |
|                                      |                                       | E                | STIMATED P                 | OTENTIAL ST                 | ANDING CRO  | P                          |                               |                    |
| Average Sac                          | ks Per Acre                           |                  | No. of Acres ⊢             | lolding Oysters             |             | Estimated No<br>Sacks in S | o. of Potential<br>Study Area |                    |
| C                                    | )                                     | Х                | 13                         | 3.3                         | =           | (                          | 0                             |                    |
| from s<br>meter s                    | quare<br>amples                       |                  | determined fro<br>scan son | om poling/side<br>ar survey |             |                            |                               |                    |
|                                      |                                       |                  |                            |                             |             | _                          |                               |                    |
|                                      |                                       | 2                |                            | ER SAMPLE                   | MORTALITIES | 5                          |                               |                    |
| Sample #                             |                                       | # Live Oysters   | # Recent<br>Boxes          | # Old Boxes                 |             | Recent<br>Mortality        |                               | Total Mortality    |
| 1                                    |                                       | 0                | 0                          | 0                           |             | 0%                         |                               | 0%                 |
| 2                                    |                                       | 0                | 0                          | 0                           |             | 0%                         |                               | 0%                 |
| 3                                    |                                       | 0                | 0                          | 0                           |             | 0%                         |                               | 0%                 |
|                                      |                                       |                  |                            |                             |             |                            |                               |                    |
| Total                                |                                       | 0                | 0                          | 0                           |             | Recent<br>Mortality        |                               | Total<br>Mortality |
| Average                              |                                       | 0.0              | 0.0                        | 0.0                         |             | 0.0%                       |                               | 0%                 |

| Study Area: E  | 17                   | Sample No: 1       |             |
|----------------|----------------------|--------------------|-------------|
| Location:      | Escambia Bay         | Collection Method: | Scuba Diver |
| Oyster Area:   | Pensacola Bay System | Sample Date:       | 7/27/2021   |
| Parish/County: | Escambia County      | Latitude:          | 30°31.034   |
| Depth (ft):    | 8.5                  | Longitude:         | 87°06.674   |



| SQUARE METER QUADRANT SAMPLE                               |                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |  |  |
|------------------------------------------------------------|-----------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|
| Study Area: E                                              | 17                                                  |                       | Sample No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | o: 2                                                  |  |  |
| Location:<br>Oyster Area:<br>Parish/County:<br>Depth (ft): | Escambia Bay<br>Pensacola Ba<br>Escambia Cou<br>8.5 | /<br>y System<br>unty | Collection Methor<br>Sample Date:<br>Latitude:<br>Longitude:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d: Scuba Diver<br>7/27/2021<br>30°31.034<br>87°06.674 |  |  |
| SQM #2 Bas<br>Picture Date:                                | ket Photo<br>7/27/2021                              |                       | Escamora Dar<br>Area 17<br>27 July 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |  |  |
| SQM #2 Tal<br>Picture Date.                                | ble Photo<br>7/27/2021                              |                       | Image: Sector Se<br>Sector Sector Se |                                                       |  |  |
| SQM #2 Oys<br>Picture Date                                 | ster Photo<br>7/27/2021                             |                       | Escambia Bai<br>Area 17<br>27 July 21<br>20<br>0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |  |  |
| SQM #2 Oys<br>Picture Date.                                | ster Photo<br>7/27/2021                             |                       | Escambia Baj<br>Area 17<br>27 July 21<br>27 July 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |  |  |

| SQUARE METER QUADRANT SAMPLE                               |                                                  |                          |                                                               |                                                    |  |  |
|------------------------------------------------------------|--------------------------------------------------|--------------------------|---------------------------------------------------------------|----------------------------------------------------|--|--|
| Study Area: E                                              | 17                                               |                          | Sample No: 3                                                  |                                                    |  |  |
| Location:<br>Oyster Area:<br>Parish/County:<br>Depth (ft): | Escambia Ba<br>Pensacola B<br>Escambia Co<br>8.5 | ay<br>ay System<br>bunty | Collection Method:<br>Sample Date:<br>Latitude:<br>Longitude: | Scuba Diver<br>7/27/2021<br>30°31.034<br>87°06.674 |  |  |
| SOM #2 Back                                                | kat Photo                                        |                          | Escambia Bay                                                  |                                                    |  |  |
| Picture Date:                                              | 7/27/2021                                        |                          | Area 17<br>27 July:21                                         | Ne //                                              |  |  |
|                                                            |                                                  |                          |                                                               |                                                    |  |  |
| SQM #3 Tab<br>Picture Date:                                | <b>le Photo</b><br>7/27/2021                     |                          |                                                               |                                                    |  |  |
| Picture Date:                                              | ter Photo<br>7/27/2021                           |                          | Escambia Bai<br>Area 17<br>27 July 21<br>3                    |                                                    |  |  |
| SQM #3 Oyst<br>Picture Date:                               | ter Photo<br>7/27/2021                           |                          | Escambia Bar<br>Area 17<br>27 July 21<br>Bar                  |                                                    |  |  |

|                   | SQUARE METER QUADRANT SAMPLE  |                                         |                 |             |                  |                               |                        |
|-------------------|-------------------------------|-----------------------------------------|-----------------|-------------|------------------|-------------------------------|------------------------|
| Stı               | ıdy Area:                     | E17                                     |                 |             | S                | Sample No:                    | 1                      |
| Oys<br>Loc<br>Cou | iter Area:<br>ation:<br>inty: | Pensacola B<br>Escambia Ba<br>Escambia  | ay System<br>ay |             |                  | Sample Date:                  | 7/27/2021              |
|                   | Shell length<br>(mm)          | Live                                    | Recent Dead     | Old Dead    | % Frequency      | % Recent<br>Mortality         | % Mortality            |
|                   | 0 0-4                         | 1                                       |                 |             | 14.29%           | 0.00%                         | 0.00%                  |
| at                | 1 5-9                         | 1                                       |                 |             | 14.29%           | 0.00%                         | 0.00%                  |
| Spi               | 2 10-14                       | 1                                       |                 |             | 14.29%           | 0.00%                         | 0.00%                  |
|                   | 3 15-19                       |                                         |                 |             | -                |                               |                        |
|                   | 4 20-24                       | 2                                       |                 |             | 29 570/          | 0.00%                         | 0.00%                  |
|                   | 5 25-29<br>6 30-34            | 2                                       |                 |             | 20.57%           | 0.00%                         | 0.00%                  |
|                   | 7 35-39                       |                                         |                 |             |                  |                               |                        |
|                   | 8 40-44                       |                                         |                 |             |                  |                               |                        |
| be                | 9 45-49                       |                                         |                 | 1           | 14.29%           |                               | 100.00%                |
| See               | 10 50-54                      |                                         |                 |             |                  |                               |                        |
|                   | 11 55-59                      | 1                                       |                 |             | 14.29%           | 0.00%                         | 0.00%                  |
|                   | 12 60-64                      |                                         |                 |             |                  |                               |                        |
|                   | 13 65-69                      |                                         |                 |             |                  |                               |                        |
|                   | 14 70-74                      |                                         |                 |             |                  |                               |                        |
|                   | 15 75-79                      |                                         |                 |             |                  |                               |                        |
|                   | 16 80-84                      |                                         |                 |             |                  |                               |                        |
|                   | 17 85-89                      |                                         |                 |             |                  |                               |                        |
|                   | 10 90-94                      |                                         |                 |             |                  |                               |                        |
| ×                 | 20 100-104                    |                                         |                 |             |                  |                               |                        |
| Sac               | 20 100-104                    |                                         |                 |             |                  |                               |                        |
| 0,                | 22 110-114                    |                                         |                 |             |                  |                               |                        |
|                   | 23 115-119                    |                                         |                 |             |                  |                               |                        |
|                   | 24 120-124                    |                                         |                 |             |                  |                               |                        |
|                   | 25 125-129                    |                                         |                 |             |                  |                               |                        |
|                   | 26 >130                       |                                         |                 |             |                  |                               |                        |
|                   | Totals                        | 6                                       | 0               | 1           | 100.00%          | 0.00%                         | 14.29%                 |
|                   |                               |                                         | OYSTER S        | IZE DISTRIB | UTION            |                               |                        |
|                   | 2                             | 3                                       |                 | -           |                  |                               | Live<br>Recent<br>Dead |
|                   | 1                             | 2<br>.5<br>1<br>0.5<br>0<br>0 - 24 mm S | pat 25-74 mm    | n Seed      | Li<br>74 mm Sack | Old Dead<br>Recent Dead<br>ve |                        |

|                   | SQUARE METER QUADRANT SAMPLE |                                        |                 |             |             |                         |                |
|-------------------|------------------------------|----------------------------------------|-----------------|-------------|-------------|-------------------------|----------------|
| Stı               | ıdy Area:                    | E17                                    |                 |             | S           | ample No:               | 2              |
| Oys<br>Loc<br>Cou | ter Area:<br>ation:<br>inty: | Pensacola B<br>Escambia Ba<br>Escambia | ay System<br>ay |             |             | Sample Date:            | 7/27/2021      |
|                   | Shell length<br>(mm)         | Live                                   | Recent Dead     | Old Dead    | % Frequency | % Recent<br>Mortality   | % Mortality    |
|                   | 0 0-4                        |                                        |                 |             |             |                         |                |
| at                | 1 5-9                        |                                        |                 |             |             |                         |                |
| Sp                | 2 10-14                      |                                        |                 |             |             |                         |                |
|                   | 3 15-19<br>4 20-24           |                                        |                 | 1           | 16.67%      |                         | 100.00%        |
|                   | 5 25-29                      | 1                                      |                 |             | 16.67%      | 0.00%                   | 0.00%          |
|                   | 6 30-34                      |                                        |                 |             |             | 0.0070                  | 0.0070         |
|                   | 7 35-39                      | 1                                      |                 |             | 16.67%      | 0.00%                   | 0.00%          |
|                   | 8 40-44                      | 1                                      |                 |             | 16.67%      | 0.00%                   | 0.00%          |
| ed                | 9 45-49                      |                                        |                 | 1           | 16.67%      |                         | 100.00%        |
| s                 | 10 50-54                     |                                        |                 |             |             |                         |                |
|                   | 11 55-59                     |                                        |                 |             |             |                         |                |
|                   | 12 60-64                     |                                        |                 |             |             |                         |                |
|                   | 13 65-69                     |                                        |                 |             |             |                         |                |
|                   | 14 70-74                     | 1                                      |                 |             | 16.67%      | 0.00%                   | 0.00%          |
|                   | 16 80-84                     |                                        |                 |             | 10.0770     | 0.0070                  | 0.0070         |
|                   | 17 85-89                     |                                        |                 |             |             |                         |                |
|                   | 18 90-94                     |                                        |                 |             |             |                         |                |
|                   | 19 95-99                     |                                        |                 |             |             |                         |                |
| ıck               | 20 100-104                   |                                        |                 |             |             |                         |                |
| Se                | 21 105-109                   |                                        |                 |             |             |                         |                |
|                   | 22 110-114                   |                                        | _               |             | -           |                         |                |
|                   | 23 115-119                   |                                        |                 |             |             |                         |                |
|                   | 24 120-124                   |                                        |                 |             |             |                         |                |
|                   | 26 >130                      |                                        |                 |             |             |                         |                |
|                   | Totals                       | 4                                      | 0               | 2           | 100.00%     | 0.00%                   | 33.33%         |
|                   |                              |                                        | OYSTER S        | IZE DISTRIB | UTION       |                         |                |
|                   |                              |                                        |                 |             |             |                         | _1.            |
|                   | :                            | 3                                      |                 |             |             |                         | Live           |
|                   | 2.                           | 5                                      |                 |             |             |                         | Recent<br>Dead |
|                   |                              | 2                                      |                 |             |             |                         | ■Old Dead      |
|                   |                              | 2                                      |                 |             |             |                         |                |
|                   | 1.                           | .5                                     |                 |             |             |                         |                |
| l                 |                              | 1                                      |                 |             |             |                         |                |
|                   | 0                            | .5                                     |                 |             |             |                         |                |
|                   |                              | 0                                      |                 | -           |             | Old Dead<br>Recent Dead |                |
|                   |                              | 0 - 24                                 |                 |             | Liv         | /6                      |                |
|                   |                              | mm                                     | 25-74           | 1           |             |                         |                |
|                   |                              | Spat                                   | mm<br>Seed      |             | >74 mm      |                         |                |
|                   |                              |                                        | 2004            |             | JUCK        |                         |                |
|                   |                              |                                        |                 |             |             |                         |                |
| l                 |                              |                                        |                 |             |             |                         |                |

|                    | SQUARE METER QUADRANT SAMPLE |                                        |                 |          |             |                       |                |
|--------------------|------------------------------|----------------------------------------|-----------------|----------|-------------|-----------------------|----------------|
| Stu                | ıdy Area:                    | E17                                    |                 |          | S           | Sample No:            | 3              |
| Oys<br>Loca<br>Cou | ter Area:<br>ation:<br>inty: | Pensacola B<br>Escambia Ba<br>Escambia | ay System<br>ay |          |             | Sample Date:          | 7/27/2021      |
|                    | Shell length<br>(mm)         | Live                                   | Recent Dead     | Old Dead | % Frequency | % Recent<br>Mortality | % Mortality    |
|                    | 0 0-4                        | 1                                      |                 |          | 25.00%      | 0.00%                 | 0.00%          |
| pat                | 2 10-14                      |                                        |                 |          | 23.0070     | 0.0070                | 0.0070         |
| S                  | 3 15-19                      |                                        |                 |          |             |                       |                |
|                    | 4 20-24                      |                                        |                 |          |             |                       |                |
|                    | 5 25-29                      | 1                                      |                 |          | 25.00%      | 0.00%                 | 0.00%          |
|                    | 6 30-34                      |                                        |                 |          |             |                       |                |
|                    | 7 35-39                      | 1                                      |                 |          | 25.00%      | 0.00%                 | 0.00%          |
| b                  | 9 45-49                      |                                        |                 |          | 20.0070     | 0.0070                | 0.0070         |
| See                | 10 50-54                     |                                        |                 |          |             |                       |                |
|                    | 11 55-59                     |                                        |                 |          |             |                       |                |
|                    | 12 60-64                     |                                        |                 | 1        | 25.00%      |                       | 100.00%        |
|                    | 13 65-69                     |                                        |                 |          |             |                       |                |
|                    | 15 75-79                     |                                        |                 |          |             |                       |                |
|                    | 16 80-84                     |                                        |                 |          |             |                       |                |
|                    | 17 85-89                     |                                        |                 |          |             |                       |                |
|                    | 18 90-94                     |                                        |                 |          |             |                       |                |
| ×                  | 19 95-99                     |                                        |                 |          |             |                       |                |
| Sac                | 20 100-104                   |                                        |                 |          |             |                       |                |
| 05                 | 22 110-114                   |                                        |                 |          |             |                       |                |
|                    | 23 115-119                   |                                        |                 |          |             |                       |                |
|                    | 24 120-124                   |                                        |                 |          |             |                       |                |
|                    | 25 125-129                   |                                        |                 |          |             |                       |                |
|                    | Totals                       | 3                                      | 0               | 1        | 100.00%     | 0.00%                 | 25.00%         |
|                    | lotaio                       |                                        | OYSTER S        |          | UTION       |                       | 20100 /0       |
|                    |                              |                                        |                 | -        |             |                       |                |
|                    |                              |                                        |                 |          |             |                       |                |
|                    |                              | 2                                      |                 |          |             |                       |                |
|                    | 1                            | .8                                     |                 |          |             |                       | Recent<br>Dead |
|                    | -                            |                                        |                 |          |             |                       | Old Dead       |
|                    | 1                            | 4                                      |                 |          |             |                       |                |
|                    | 1                            | 2                                      |                 |          |             |                       |                |
|                    |                              | 1                                      |                 |          |             |                       |                |
|                    | (                            | 0.8                                    |                 |          |             |                       |                |
|                    |                              | 0.6                                    |                 |          |             |                       |                |
|                    |                              | 0.4                                    |                 |          |             |                       |                |
|                    |                              | 0.2                                    |                 |          |             |                       |                |
|                    |                              | 0.2                                    |                 |          |             | / Old Dead            |                |
|                    |                              |                                        |                 |          |             | Recent Dead           |                |
|                    |                              | 0 - 24<br>mm                           | 25-7            | 24       |             | ive                   |                |
|                    |                              | Spat                                   | mr              | 1        | >74 mm      |                       |                |
| 1                  |                              |                                        | See             | d        | Sack        |                       |                |
| 1                  |                              |                                        |                 |          |             |                       |                |
|                    |                              |                                        |                 |          |             |                       |                |

## Study Area: E17

#### Acres in Study Area:93.6 Acres with Oysters: 15.3

Oyster Area: Location:

County:

: Pensacola Bay System Escambia Bay

Sample

Escambia

Sample Date: 7/27/2021

| CULTCH/MATERIALS PRESENT |          |          |          |  |
|--------------------------|----------|----------|----------|--|
| Material                 | Sample 1 | Sample 2 | Sample 3 |  |
| Crush Concrete           | 0        | 0        | 0        |  |
| Limestone                | Х        | Х        | Х        |  |
| Oyster Shell Cultch      | Х        | Х        | Х        |  |
| Oyster Shell Fragments   | Х        | Х        | Х        |  |
| Oyster Shell Rubble      | Х        | Х        | Х        |  |
| Oyster Clusters          | Х        | Х        | Х        |  |
| Oyster Singles           | Х        | Х        | Х        |  |
| Broken Oyster Shells     | 0        | 0        | 0        |  |
| Clam Shells              | Х        | Х        | Х        |  |
| Marsh Debris             | 0        | 0        | 0        |  |
| H2S Odor                 | 0        | 0        | 0        |  |

#### **OYSTER REEF ORGANISMS - PRESENT**

| Species        | Sample 1 | Sample 2 | Sample 3 |
|----------------|----------|----------|----------|
| Barnacles      | Х        | Х        | Х        |
| Brittle Stars  | 0        | 0        | 0        |
| Sea Squirts    | 0        | 0        | 0        |
| Slipper Shells | 0        | 0        | 0        |
| Bryozoan       | 0        | 0        | 0        |

| Material      | Sample 1    | Sample 2 | Sample 3 |
|---------------|-------------|----------|----------|
| Oyster Drills | 0           | 0        | 0        |
| Hermit Crabs  | 0           | 0        | 0        |
| Mud Crabs     | 0           | 0        | 0        |
| Mussels       | 200         | 100      | 120      |
| Rangia        | 0           | 0        | 0        |
| Material      | Total Count |          |          |
| Oyster Drills | 0           |          |          |
| Hermit Crabs  | 0           |          |          |
| Mud Crabs     | 0           |          |          |
| Mussels       | 420         |          |          |
| Rangia        | 0           |          |          |

#### OYSTER SHELL COLOR

| Sample 1    |    |  |  |  |  |
|-------------|----|--|--|--|--|
| Shell Color | %  |  |  |  |  |
| Brown-Green | 0  |  |  |  |  |
| Brown       | 5  |  |  |  |  |
| Black       | 0  |  |  |  |  |
| Gray        | 95 |  |  |  |  |
|             | -  |  |  |  |  |



| Sample 2    |     |  |  |  |
|-------------|-----|--|--|--|
| Shell Color | %   |  |  |  |
| Brown-Green | 0   |  |  |  |
| Brown       | 0   |  |  |  |
| Black       | 0   |  |  |  |
| Grav        | 100 |  |  |  |



| Samp        | Sample 3 |  |  |  |  |
|-------------|----------|--|--|--|--|
| Shell Color | %        |  |  |  |  |
| Brown-Green | 0        |  |  |  |  |
| Brown       | 0        |  |  |  |  |
| Black       | 0        |  |  |  |  |
| Gray        | 100      |  |  |  |  |



## Study Area: E17

## Acres in Study: 93.6

Acres with Oyster Reef: 15.3

| Oyster Area:<br>Location:<br>County: | Pensacola E<br>Escambia B<br>Escambia | 3ay System<br>ay |                            |                             |             |                            | Sample Date                   | 7/27/2021       |
|--------------------------------------|---------------------------------------|------------------|----------------------------|-----------------------------|-------------|----------------------------|-------------------------------|-----------------|
|                                      | Ο                                     | /sters in Samp   | ole                        |                             | S           | Sacks Per Acr              | e                             |                 |
| Sample #                             | <24mm                                 | 25-74            | >75mm                      | All sizes                   | Disc        | ounted for Morta           | alities                       | Total           |
|                                      | spat                                  | seed             | sack                       | 180oys/sack                 | spat(10%)   | seed(50%)                  | sack                          | 1               |
|                                      |                                       |                  |                            |                             |             |                            |                               |                 |
| 1                                    | 3                                     | 3                | 0                          | 135                         | 7           | 34                         | 0                             | 40              |
| 2                                    | 0                                     | 3                | 1                          | 90                          | 0           | 34                         | 22                            | 56              |
| 3                                    | 1                                     | 2                | 0                          | 67                          | 2           | 22                         | 0                             | 25              |
|                                      |                                       |                  |                            |                             |             |                            |                               |                 |
| TOTAL                                | 4                                     | 8                | 1                          | 292                         | 9           | 90                         | 22                            | 121             |
|                                      |                                       |                  |                            |                             |             |                            |                               |                 |
| AVERAGE                              | 1.3                                   | 2.7              | 0.3                        | 97.4                        | 3.0         | 30.0                       | 7.5                           | 40.5            |
|                                      |                                       |                  |                            |                             |             |                            |                               |                 |
|                                      |                                       | E                | STIMATED P                 | OTENTIAL ST                 | ANDING CRC  | P                          |                               |                 |
| Average Sac                          | ks Per Acre                           |                  | No. of Acres H             | lolding Oysters             |             | Estimated No<br>Sacks in S | o. of Potential<br>Study Area |                 |
| 40                                   | )                                     | Х                | 15                         | 5.3                         | =           | 6                          | 19                            |                 |
| from so<br>meter sa                  | quare<br>amples                       |                  | determined fro<br>scan son | om poling/side<br>ar survey |             |                            |                               |                 |
|                                      |                                       |                  |                            |                             |             |                            |                               |                 |
|                                      |                                       | S                | QUARE MET                  | ER SAMPLE                   | MORTALITIES | 5                          |                               |                 |
|                                      | •                                     |                  |                            |                             |             | -                          |                               | 1               |
| Sample #                             |                                       | # Live Oysters   | # Recent<br>Boxes          | # Old Boxes                 |             | Recent<br>Mortality        |                               | Total Mortality |
| 1                                    |                                       | 6                | 0                          | 1                           |             | 0%                         |                               | 14%             |
| 2                                    |                                       | 4                | 0                          | 2                           |             | 0%                         |                               | 33%             |
| 3                                    |                                       | 3                | 0                          | 1                           |             | 0%                         |                               | 25%             |
|                                      |                                       |                  |                            |                             |             |                            |                               |                 |
| Total                                |                                       | 13               | 0                          | 1                           |             | Recent                     |                               | Total           |
| Total                                |                                       | 13               | 0                          | 4                           |             | Mortality                  |                               | Mortality       |
| Average                              |                                       | 4.3              | 0.0                        | 1.3                         |             | 0.0%                       |                               | 24%             |

| Study Area: E                                              | 27                                                             | Sample No: 2                                                                  |                                                    |
|------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------|
| Location:<br>Oyster Area:<br>Parish/County:<br>Depth (ft): | Escambia Bay<br>Pensacola Bay System<br>Escambia County<br>9.0 | Collection Method:<br>Sample Date:<br>Latitude:<br>Longitude:                 | Scuba Diver<br>7/28/2021<br>30°29.009<br>87°08.825 |
| SQM #2 Bas                                                 | ket Photo                                                      |                                                                               |                                                    |
| Picture Date:                                              | 7/28/2021                                                      | Escambia Bay<br>Area 27<br>28 July 21<br>2                                    |                                                    |
| SQM #2 Tal                                                 | ble Photo                                                      |                                                                               |                                                    |
| Picture Date:                                              |                                                                |                                                                               |                                                    |
| SQM #2 Bo<br>Picture Date:                                 | DX Photo<br>7/28/2021                                          | Escamenta Bay<br>Anea 27<br>28 July 20<br>00000000000000000000000000000000000 |                                                    |

|                                                            | SQUARE METER                                                   | QUADRANT SAMPLE                                               |                                                    |
|------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|
| Study Area: E                                              | 27                                                             | Sample No: 3                                                  |                                                    |
| Location:<br>Oyster Area:<br>Parish/County:<br>Depth (ft): | Escambia Bay<br>Pensacola Bay System<br>Escambia County<br>9.0 | Collection Method:<br>Sample Date:<br>Latitude:<br>Longitude: | Scuba Diver<br>7/28/2021<br>30°29.009<br>87°08.825 |
| SQM #3 Bas<br>Picture Date:<br>SQM #3 Tal<br>Picture Date  | Aket Photo         T/28/2021                                   |                                                               |                                                    |

L



Figure 96. Water Bottom Image Area E27

|                    | SQUARE METER QUADRANT SAMPLE  |                                         |                 |          |                  |                               |                                                                     |
|--------------------|-------------------------------|-----------------------------------------|-----------------|----------|------------------|-------------------------------|---------------------------------------------------------------------|
| Stu                | ıdy Area:                     | E27                                     |                 |          | S                | Sample No:                    | 1                                                                   |
| Oys<br>Loca<br>Cou | iter Area:<br>ation:<br>inty: | Pensacola Ba<br>Escambia Ba<br>Escambia | ay System<br>y  |          |                  | Sample Date:                  | 7/28/2021                                                           |
|                    | Shell length<br>(mm)          | Live                                    | Recent Dead     | Old Dead | % Frequency      | % Recent<br>Mortality         | % Mortality                                                         |
|                    | 0 0-4                         |                                         |                 |          | _                |                               |                                                                     |
| at                 | 1 5-9                         |                                         |                 |          |                  |                               |                                                                     |
| Sp                 | 2 10-14                       |                                         |                 |          |                  |                               |                                                                     |
|                    | 4 20-24                       |                                         |                 |          |                  |                               |                                                                     |
|                    | 5 25-29                       |                                         |                 |          |                  |                               |                                                                     |
|                    | 6 30-34                       |                                         |                 |          |                  |                               |                                                                     |
|                    | 7 35-39                       |                                         |                 |          |                  |                               |                                                                     |
|                    | 8 40-44                       |                                         |                 | 1        | 25.00%           |                               | 100.00%                                                             |
| bed                | 9 45-49                       |                                         |                 | 2        | 50.00%           |                               | 100.00%                                                             |
| Se                 | 10 50-54                      |                                         |                 |          |                  |                               |                                                                     |
|                    | 11 55-59                      |                                         |                 |          |                  |                               |                                                                     |
|                    | 12 60-64                      | -                                       |                 |          | -                |                               |                                                                     |
|                    | 13 65-69                      |                                         |                 |          |                  |                               |                                                                     |
| -                  | 14 70-74                      |                                         |                 |          |                  |                               |                                                                     |
|                    | 16 80-84                      |                                         |                 |          |                  |                               |                                                                     |
|                    | 17 85-89                      |                                         |                 |          |                  |                               |                                                                     |
|                    | 18 90-94                      |                                         |                 | 1        | 25.00%           |                               | 100.00%                                                             |
|                    | 19 95-99                      |                                         |                 |          |                  |                               |                                                                     |
| ъ                  | 20 100-104                    |                                         |                 |          |                  |                               |                                                                     |
| Sa                 | 21 105-109                    |                                         |                 |          |                  |                               |                                                                     |
|                    | 22 110-114                    |                                         |                 |          |                  |                               |                                                                     |
|                    | 23 115-119                    |                                         |                 |          |                  |                               |                                                                     |
|                    | 24 120-124                    |                                         |                 |          |                  |                               |                                                                     |
|                    | 25 125-129                    |                                         |                 |          |                  |                               |                                                                     |
|                    | 26 >130                       | 0                                       | 0               | 4        | 100.00%          | 0.00%                         | 100 00%                                                             |
|                    | TOLAIS                        | 0                                       | 0               | 4        | 100.00%          | 0.00%                         | 100.00%                                                             |
|                    | 2.<br>1                       | 3<br>5<br>2<br>.5<br>1<br>0.5           |                 |          |                  |                               | <ul> <li>Live</li> <li>Recent<br/>Dead</li> <li>Old Dead</li> </ul> |
|                    |                               | 0<br>0 - 24 mm Sp                       | pat<br>25-74 mm | n Seed   | Li<br>74 mm Sack | Old Dead<br>Recent Dead<br>ve |                                                                     |

|                   | SQUARE METER QUADRANT SAMPLE |                                         |                 |             |             |                           |                |
|-------------------|------------------------------|-----------------------------------------|-----------------|-------------|-------------|---------------------------|----------------|
| Stı               | ıdy Area:                    | E27                                     |                 |             | S           | Sample No:                | 2              |
| Oys<br>Loc<br>Cou | ter Area:<br>ation:<br>inty: | Pensacola Ba<br>Escambia Ba<br>Escambia | ay System<br>iy |             |             | Sample Date:              | 7/28/2021      |
|                   | Shell length<br>(mm)         | Live                                    | Recent Dead     | Old Dead    | % Frequency | % Recent<br>Mortality     | % Mortality    |
|                   | 0 0-4                        |                                         |                 |             |             |                           |                |
| at                | 1 5-9                        |                                         |                 |             |             |                           |                |
| sp                | 2 10-14                      |                                         |                 |             |             |                           |                |
|                   | 4 20-24                      |                                         |                 |             |             |                           |                |
|                   | 5 25-29                      |                                         |                 |             |             |                           |                |
|                   | 6 30-34                      |                                         |                 |             |             |                           |                |
|                   | 7 35-39                      |                                         |                 |             |             |                           |                |
| σ                 | 8 40-44                      |                                         |                 |             |             |                           |                |
| See               | 9 45-49<br>10 50-54          |                                         |                 |             |             |                           |                |
| 00                | 11 55-59                     |                                         |                 |             |             |                           |                |
|                   | 12 60-64                     |                                         |                 | 1           | 14.29%      |                           | 100.00%        |
|                   | 13 65-69                     |                                         |                 | 4           | 57.14%      |                           | 100.00%        |
|                   | 14 70-74                     |                                         |                 | 1           | 14.29%      |                           | 100.00%        |
|                   | 15 75-79                     |                                         |                 |             |             |                           |                |
|                   | 16 80-84                     |                                         |                 |             |             |                           |                |
|                   | 18 90-94                     |                                         |                 |             |             |                           |                |
|                   | 19 95-99                     |                                         |                 | 1           | 14.29%      |                           | 100.00%        |
| ç                 | 20 100-104                   |                                         |                 |             |             |                           |                |
| Sa                | 21 105-109                   |                                         |                 |             |             |                           |                |
|                   | 22 110-114                   |                                         |                 |             |             |                           |                |
|                   | 23 115-119                   |                                         |                 |             |             |                           |                |
|                   | 25 125-129                   |                                         |                 |             |             |                           |                |
|                   | 26 >130                      |                                         |                 |             |             |                           |                |
|                   | Totals                       | 0                                       | 0               | 7           | 100.00%     | 0.00%                     | 100.00%        |
|                   |                              |                                         | OYSTER S        | IZE DISTRIB | UTION       |                           |                |
|                   |                              |                                         |                 |             |             |                           | Live           |
|                   | 6                            | 5                                       |                 |             |             |                           |                |
|                   |                              | 5                                       |                 |             |             |                           | Recent<br>Dead |
|                   |                              |                                         |                 |             |             |                           | Old Dead       |
|                   |                              | 4                                       |                 |             |             |                           |                |
|                   |                              | 3                                       |                 | _           |             |                           |                |
|                   |                              | 2                                       |                 | _           |             |                           |                |
|                   |                              | 1                                       |                 |             |             |                           |                |
|                   |                              | 0                                       |                 | ~           | -           | / Old Dead<br>Recent Dead |                |
|                   |                              | 0 - 24                                  | 25-7/           | 1           |             | ve                        |                |
|                   |                              | Spat                                    | 25-72<br>       | т           | >74 mm      |                           |                |
|                   |                              |                                         | Seed            |             | Sack        |                           |                |
|                   |                              |                                         |                 |             |             |                           |                |
|                   |                              |                                         |                 |             |             |                           |                |



## Study Area: E27

#### Acres in Study Area: 274 Acres with Oysters: 12.9

Oyster Area:

Pensacola Bay System Location: Escambia Bay

Sample Date: 7/28/2021

|                        | JLICH/MATERIALS | PKESENI  |          |
|------------------------|-----------------|----------|----------|
| Material               | Sample 1        | Sample 2 | Sample 3 |
| Crush Concrete         | 0               | 0        | 0        |
| Limestone              | 0               | 0        | 0        |
| Oyster Shell Cultch    | Х               | Х        | Х        |
| Oyster Shell Fragments | Х               | Х        | Х        |
| Oyster Shell Rubble    | Х               | Х        | Х        |
| Oyster Clusters        | Х               | 0        | 0        |
| Oyster Singles         | Х               | 0        | 0        |
| Broken Oyster Shells   | 0               | 0        | 0        |
| Clam Shells            | 0               | 0        | 0        |
| Marsh Debris           | 0               | 0        | 0        |
| H2S Odor               | 0               | 0        | 0        |

#### **OYSTER REEF ORGANISMS - PRESENT**

| Species        | Sample 1 | Sample 2 | Sample 3 |
|----------------|----------|----------|----------|
| Barnacles      | Х        | Х        | Х        |
| Brittle Stars  | 0        | 0        | 0        |
| Sea Squirts    | 0        | 0        | 0        |
| Slipper Shells | 0        | 0        | 0        |
| Bryozoan       | 0        | 0        | 0        |

| Material      | Sample 1    | Sample 2 | Sample 3 |
|---------------|-------------|----------|----------|
| Oyster Drills | 0           | 0        | 0        |
| Hermit Crabs  | 0           | 0        | 0        |
| Mud Crabs     | 0           | 0        | 0        |
| Mussels       | 0           | 0        | 0        |
| Rangia        | 0           | 0        | 0        |
| Material      | Total Count |          |          |
| Oyster Drills | 0           |          |          |
| Hermit Crabs  | 0           |          |          |
| Mud Crabs     | 0           |          |          |
| Mussels       | 0           |          |          |
| Rangia        | 0           |          |          |

#### **OYSTER SHELL COLOR**

| Sample 1    |     |  |  |  |  |
|-------------|-----|--|--|--|--|
| Shell Color | %   |  |  |  |  |
| Brown-Green | 0   |  |  |  |  |
| Brown       | 0   |  |  |  |  |
| Black       | 0   |  |  |  |  |
| Gray        | 100 |  |  |  |  |

Black

## Sample 2

| Shell Color | %   |
|-------------|-----|
| Brown-Green | 0   |
| Brown       | 0   |
| Black       | 0   |
| Gray        | 100 |







Gray

## Study Area: E27

## Acres in Study: 274

Acres with Oyster Reef: 12.9

| Oyster Area:<br>Location: | Pensacola Ba<br>Escambia Ba | ay System<br>y |                |                 |            |                  | Sample Date           | 7/28/2021        |
|---------------------------|-----------------------------|----------------|----------------|-----------------|------------|------------------|-----------------------|------------------|
| County.                   | Escallipia                  |                |                |                 |            |                  |                       |                  |
|                           | O                           | sters in Sam   | ole            |                 | Ś          | Sacks Per Acr    | е                     |                  |
| Sample #                  | <24mm                       | 25-74          | >75mm          | All sizes       | Disc       | ounted for Morta | lities                | Total            |
|                           | spat                        | seed           | sack           | 180oys/sack     | spat(10%)  | seed(50%)        | sack                  |                  |
|                           |                             |                |                |                 |            |                  |                       |                  |
| 1                         | 0                           | 0              | 0              | 0               | 0          | 0                | 0                     | 0                |
| 2                         | 0                           | 0              | 0              | 0               | 0          | 0                | 0                     | 0                |
| 3                         | 0                           | 0              | 0              | 0               | 0          | 0                | 0                     | 0                |
|                           |                             |                |                |                 |            |                  |                       |                  |
| TOTAL                     | 0                           | 0              | 0              | 0               | 0          | 0                | 0                     | 0                |
|                           |                             | -              |                | -               | -          | -                |                       | -                |
| AVERAGE                   | 0.0                         | 0.0            | 0.0            | 0.0             | 0.0        | 0.0              | 0.0                   | 0.0              |
|                           | 0.0                         | 0.0            | 0.0            | 0.0             | 0.0        | 0.0              | 0.0                   | 0.0              |
|                           |                             | E              | STIMATED P     | OTENTIAL ST     | ANDING CRC | )P               |                       |                  |
|                           |                             |                |                |                 |            |                  |                       |                  |
|                           |                             |                |                |                 |            | Estimated No     | of Potential          |                  |
| Average Sad               | cks Per Acre                |                | No. of Acres H | lolding Oysters |            | Sacks in S       | Study Area            |                  |
|                           |                             |                |                |                 |            |                  | ···· <b>,</b> · · · · |                  |
| (                         | )                           | x              | 12             | 29              | =          | (                | r                     |                  |
|                           |                             | X              |                |                 |            | ·                |                       |                  |
| from s                    | auare                       |                | determined fr  | om polina/side  |            |                  |                       |                  |
| meter s                   | amnles                      |                | scan son       | ar survey       |            |                  |                       |                  |
|                           | ampiee                      |                | ocar con       |                 |            |                  |                       |                  |
|                           |                             | c              |                |                 |            | 2                |                       |                  |
|                           |                             |                |                | ER SAMPLE       | WORTALITIE | 5                |                       |                  |
|                           |                             |                |                |                 |            |                  |                       |                  |
| 0                         |                             | #15.0 Output   | # Recent       | # Old David     |            | Recent           |                       | Total Mandality  |
| Sample #                  |                             | # Live Oysters | Boxes          | # Old Boxes     |            | Mortality        |                       | I otal Mortality |
|                           |                             |                |                |                 |            |                  |                       |                  |
| 1                         |                             | 0              | 0              | 4               |            | 0%               |                       | 100%             |
| 2                         |                             | 0              | 0              | 7               |            | 0%               |                       | 100%             |
|                           |                             |                |                |                 |            |                  |                       |                  |
|                           |                             |                |                |                 |            |                  |                       |                  |
| Total                     |                             | 0              | 0              | 11              |            | Recent           |                       | Total            |
| 10101                     |                             | Ŭ              | 0              |                 |            | Mortality        |                       | Mortality        |
| Average                   |                             | 0.0            | 0.0            | 5.5             |            | 0.0%             |                       | 100%             |

| Study Area: E28 |                      | Sample No: 1       |             |
|-----------------|----------------------|--------------------|-------------|
| Location:       | Escambia Bay         | Collection Method: | Scuba Diver |
| Oyster Area:    | Pensacola Bay System | Sample Date:       | 7/28/2021   |
| Parish/County:  | Escambia County      | Latitude:          | 30°29.023   |
| Depth (ft):     | 7.9                  | Longitude:         | 87°09.441   |



| Study Area: E28       Sample No: 2         Location:       Escambia Bay       Collection Method:       Scub         Oyster Area:       Pensacola Bay System       Sample Date:       7/2         Parish/County:       Escambia County       Latitude:       30'         Depth (ft):       7.9       Longitude:       87'         SQM #2 Basket Photo       Picture Date:       7/28/2021       Image: Source and the second and the s | pa Diver<br>28/2021<br>229.023<br>209.441 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Location:       Escambia Bay       Collection Method:       Scub         Oyster Area:       Pensacola Bay System       Sample Date:       7/2         Parish/County:       Escambia County       Latitude:       30'         Depth (ft):       7.9       Longitude:       87'         SQM #2 Basket Photo         Picture Date:       7/28/2021         SQM #2 Table Photo         Picture Date:       7/28/2021         SQM #2 Table Photo         Picture Date:       7/28/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a Diver<br>28/2021<br>°29.023<br>°09.441  |
| SQM #2 Basket Photo         Picture Date:       7/28/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A Law                                     |
| SQM #2 Table Photo         Picture Date: 7/28/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |
| SQM #2 Oyster Photo         Picture Date: 7/28/2021         EscamBia BAY         AREA E28         28 July 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | St.                                       |
| SQM #2 Box Photo         Picture Date: 7/28/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |

| SQUARE METER QUADRANT SAMPLE                               |                                                    |                       |                                                             |                                                        |  |  |
|------------------------------------------------------------|----------------------------------------------------|-----------------------|-------------------------------------------------------------|--------------------------------------------------------|--|--|
| Study Area: E                                              | 28                                                 |                       | Sample N                                                    | lo: 3                                                  |  |  |
| Location:<br>Oyster Area:<br>Parish/County:<br>Depth (ft): | Escambia Bay<br>Pensacola Ba<br>Escambia Co<br>7.9 | y<br>y System<br>unty | Collection Metho<br>Sample Date:<br>Latitude:<br>Longitude: | od: Scuba Diver<br>7/28/2021<br>30°29.023<br>87°09.441 |  |  |
| SQM #3 Basi<br>Picture Date:                               | ket Photo<br>7/28/2021                             |                       | Escambia BAY<br>AREA E28<br>28 July 21                      |                                                        |  |  |
| SQM #3 Tab<br>Picture Date:                                | ole Photo<br>7/28/2021                             |                       |                                                             |                                                        |  |  |
| SQM #3 Oys<br>Picture Date:                                | ter Photo<br>7/28/2021                             | ·                     | AREA E28<br>28 July 21                                      | 3                                                      |  |  |
| SQM #3 Bo<br>Picture Date:                                 | x Photo<br>7/28/2021                               |                       | Escale 28<br>Barur 201                                      |                                                        |  |  |

|                    | SQUARE METER QUADRANT SAMPLE  |                                         |                 |          |                  |                               |                                                                     |
|--------------------|-------------------------------|-----------------------------------------|-----------------|----------|------------------|-------------------------------|---------------------------------------------------------------------|
| Stu                | ıdy Area:                     | E28                                     |                 |          | S                | Sample No:                    | 1                                                                   |
| Oys<br>Loca<br>Cou | iter Area:<br>ation:<br>inty: | Pensacola Ba<br>Escambia Ba<br>Escambia | ay System<br>Iy |          |                  | Sample Date:                  | 7/29/2021                                                           |
|                    | Shell length<br>(mm)          | Live                                    | Recent Dead     | Old Dead | % Frequency      | % Recent<br>Mortality         | % Mortality                                                         |
|                    | 0 0-4                         | 1                                       |                 |          | 6.25%            | 0.00%                         | 0.00%                                                               |
| at                 | 1 5-9                         | 3                                       |                 |          | 18.75%           | 0.00%                         | 0.00%                                                               |
| Sp                 | 2 10-14                       |                                         |                 |          |                  |                               |                                                                     |
|                    | 4 20-24                       |                                         |                 |          |                  |                               |                                                                     |
|                    | 5 25-29                       |                                         |                 |          |                  |                               |                                                                     |
|                    | 6 30-34                       |                                         |                 |          |                  |                               |                                                                     |
|                    | 7 35-39                       |                                         |                 |          |                  |                               |                                                                     |
| _                  | 8 40-44                       |                                         |                 |          |                  |                               |                                                                     |
| eec                | 9 45-49                       |                                         |                 |          |                  |                               |                                                                     |
| Š                  | 10 50-54                      |                                         |                 |          |                  |                               |                                                                     |
|                    | 12 60-64                      |                                         |                 | 2        | 12 50%           |                               | 100.00%                                                             |
|                    | 13 65-69                      |                                         |                 |          | 12.0070          |                               | 100.00 /0                                                           |
|                    | 14 70-74                      |                                         |                 | 2        | 12.50%           |                               | 100.00%                                                             |
|                    | 15 75-79                      |                                         |                 | 2        | 12.50%           |                               | 100.00%                                                             |
|                    | 16 80-84                      |                                         |                 | 1        | 6.25%            |                               | 100.00%                                                             |
|                    | 17 85-89                      |                                         |                 | -        |                  |                               |                                                                     |
|                    | 18 90-94                      |                                         |                 | 3        | 18.75%           |                               | 100.00%                                                             |
| ×                  | 19 95-99                      |                                         |                 | 1        | 6.25%            |                               | 100.00%                                                             |
| ac                 | 20 100-104                    |                                         |                 | I        | 0.23%            |                               | 100.00%                                                             |
| 05                 | 22 110-114                    |                                         |                 | 1        | 6.25%            |                               | 100.00%                                                             |
|                    | 23 115-119                    |                                         |                 |          |                  |                               |                                                                     |
|                    | 24 120-124                    |                                         |                 |          |                  |                               |                                                                     |
|                    | 25 125-129                    |                                         |                 |          |                  |                               |                                                                     |
|                    | 26 >130                       |                                         |                 |          |                  |                               |                                                                     |
|                    | Totals                        | 4                                       | 0               | 12       | 100.00%          | 0.00%                         | 75.00%                                                              |
|                    |                               | 8<br>7<br>6<br>5<br>4<br>3<br>2         |                 |          |                  |                               | <ul> <li>Live</li> <li>Recent<br/>Dead</li> <li>Old Dead</li> </ul> |
|                    |                               | 1<br>0<br>0 - 24 mm Sp                  | pat<br>25-74 mm | n Seed > | Li<br>74 mm Sack | Old Dead<br>Recent Dead<br>ve |                                                                     |

| SQUARE METER QUADRANT SAMPLE |                              |                                                         |                 |          |                |                         |                                                                     |
|------------------------------|------------------------------|---------------------------------------------------------|-----------------|----------|----------------|-------------------------|---------------------------------------------------------------------|
| Stu                          | ıdy Area:                    | E28                                                     |                 |          | S              | ample No:               | 2                                                                   |
| Oys<br>Loca<br>Cou           | ter Area:<br>ation:<br>inty: | Pensacola B<br>Escambia Ba<br>Escambia                  | ay System<br>Iy |          |                | Sample Date:            | 7/29/2021                                                           |
|                              | Shell length<br>(mm)         | Live                                                    | Recent Dead     | Old Dead | % Frequency    | % Recent<br>Mortality   | % Mortality                                                         |
|                              | 0 0-4                        |                                                         |                 |          |                |                         |                                                                     |
| at                           | 1 5-9                        |                                                         |                 | 1        | 5.00%          | 0.000/                  | 100.00%                                                             |
| Sp                           | 2 10-14                      | 1                                                       |                 |          | 5.00%          | 0.00%                   | 0.00%                                                               |
|                              | 3 15-19                      |                                                         |                 |          |                |                         |                                                                     |
|                              | 5 25-29                      |                                                         |                 |          |                |                         |                                                                     |
|                              | 6 30-34                      |                                                         |                 |          |                |                         |                                                                     |
|                              | 7 35-39                      |                                                         |                 |          |                |                         |                                                                     |
|                              | 8 40-44                      |                                                         |                 | 1        | 5.00%          |                         | 100.00%                                                             |
| ed                           | 9 45-49                      |                                                         |                 |          |                |                         |                                                                     |
| Se                           | 10 50-54                     |                                                         |                 | 1        | 5.00%          |                         | 100.00%                                                             |
|                              | 11 55-59                     |                                                         |                 |          |                |                         |                                                                     |
|                              | 12 60-64                     |                                                         |                 |          |                |                         |                                                                     |
|                              | 13 65-69                     |                                                         |                 | 2        | 10.00%         |                         | 100.00%                                                             |
|                              | 14 70-74                     |                                                         |                 | 2        | 10.00%         |                         | 100.00%                                                             |
|                              | 15 75-79                     |                                                         |                 | 2        | 10.00%         |                         | 100.00%                                                             |
|                              | 10 80-84                     |                                                         |                 | 3        | 15.00%         |                         | 100 00%                                                             |
|                              | 17 03-09                     |                                                         |                 | 3        | 15.00%         |                         | 100.00%                                                             |
|                              | 19 95-99                     |                                                         |                 | 2        | 10.00%         |                         | 100.00%                                                             |
| ×                            | 20 100-104                   |                                                         |                 | _        | 10.0070        |                         | 100.0070                                                            |
| Sac                          | 21 105-109                   |                                                         |                 | 1        | 5.00%          |                         | 100.00%                                                             |
| ••                           | 22 110-114                   | 1                                                       |                 |          |                |                         |                                                                     |
|                              | 23 115-119                   |                                                         |                 |          |                |                         |                                                                     |
|                              | 24 120-124                   |                                                         |                 | 1        | 5.00%          |                         | 100.00%                                                             |
|                              | 25 125-129                   |                                                         |                 |          |                |                         |                                                                     |
|                              | 26 >130                      |                                                         |                 |          |                |                         |                                                                     |
|                              | Totals                       | 1                                                       | 0               | 19       | 100.00%        | 0.00%                   | 95.00%                                                              |
|                              | 1:<br>1                      | 2<br>0<br>8<br>6<br>4<br>2<br>0<br>0 - 24<br>mm<br>Snat | 25-74           |          |                | Old Dead<br>Recent Dead | <ul> <li>Live</li> <li>Recent<br/>Dead</li> <li>Old Dead</li> </ul> |
|                              |                              | Spat                                                    | mm<br>Seed      |          | >74 mm<br>Sack |                         |                                                                     |

|                   | SQUARE METER QUADRANT SAMPLE  |                                        |                 |             |             |                       |                |
|-------------------|-------------------------------|----------------------------------------|-----------------|-------------|-------------|-----------------------|----------------|
| Stı               | ıdy Area:                     | E28                                    |                 |             | Ş           | Sample No:            | 3              |
| Oys<br>Loc<br>Cou | iter Area:<br>ation:<br>inty: | Pensacola B<br>Escambia Ba<br>Escambia | ay System<br>ay |             |             | Sample Date:          | 7/29/2021      |
|                   | Shell length<br>(mm)          | Live                                   | Recent Dead     | Old Dead    | % Frequency | % Recent<br>Mortality | % Mortality    |
|                   | 0 0-4                         |                                        | 1               |             | 6.67%       | 100.00%               | 100.00%        |
| at                | 1 5-9                         |                                        |                 |             |             |                       |                |
| Sp                | 2 10-14                       |                                        |                 |             |             |                       |                |
|                   | 4 20-24                       |                                        |                 |             |             |                       |                |
|                   | 5 25-29                       |                                        |                 |             |             |                       |                |
|                   | 6 30-34                       |                                        |                 |             |             |                       |                |
|                   | 7 35-39                       |                                        |                 |             |             |                       |                |
| 5                 | 8 40-44                       | 1                                      |                 |             | 6.67%       | 0.00%                 | 0.00%          |
| ee                | 9 45-49                       |                                        |                 |             |             |                       |                |
| S                 | 10 50-54                      |                                        |                 |             |             |                       |                |
|                   | 12 60-64                      |                                        |                 |             |             |                       |                |
|                   | 13 65-69                      |                                        |                 | 1           | 6.67%       |                       | 100.00%        |
|                   | 14 70-74                      |                                        |                 | 1           | 6.67%       |                       | 100.00%        |
|                   | 15 75-79                      |                                        |                 | 2           | 13.33%      |                       | 100.00%        |
|                   | 16 80-84                      |                                        |                 | 1           | 6.67%       |                       | 100.00%        |
|                   | 17 85-89                      |                                        |                 | 2           | 13.33%      |                       | 100.00%        |
|                   | 19 95-99                      |                                        |                 | 1           | 6.67%       |                       | 100.00%        |
| ъ                 | 20 100-104                    |                                        |                 | 1           | 6.67%       |                       | 100.00%        |
| Sa                | 21 105-109                    |                                        |                 |             |             |                       |                |
|                   | 22 110-114                    |                                        |                 | 1           | 6.67%       |                       | 100.00%        |
|                   | 23 115-119                    |                                        |                 | 1           | 6.67%       |                       | 100.00%        |
|                   | 25 125-129                    |                                        |                 | 1           | 6.67%       |                       | 100.00%        |
|                   | 26 >130                       |                                        |                 | •           |             |                       |                |
|                   | Totals                        | 1                                      | 1               | 13          | 100.00%     | 50.00%                | 93.33%         |
|                   |                               |                                        | OYSTER S        | IZE DISTRIE | BUTION      |                       |                |
|                   |                               |                                        |                 |             |             |                       |                |
|                   | 1                             | 12 1                                   |                 |             |             |                       | Live           |
|                   | :                             | 10                                     |                 |             |             |                       | Recent<br>Dead |
|                   |                               |                                        |                 |             |             |                       | Old Dead       |
|                   |                               | 8                                      |                 |             |             |                       |                |
|                   |                               | 6                                      |                 |             |             |                       |                |
|                   |                               |                                        |                 |             |             |                       |                |
|                   |                               | 4                                      |                 |             |             |                       |                |
|                   |                               | 2                                      |                 |             |             |                       |                |
|                   |                               |                                        |                 |             |             | Old Dead              |                |
|                   |                               | 0 - 24                                 |                 |             |             | Recent Dead           |                |
|                   |                               | mm                                     | 25-7            | 4           |             | ive                   |                |
|                   |                               | Spat                                   | mm              | า<br>d      | >74 mm      |                       |                |
|                   |                               |                                        | Jee             | <i>ч</i>    | SdCK        |                       |                |
|                   |                               |                                        |                 |             |             |                       |                |
| 1                 |                               |                                        |                 |             |             |                       |                |

#### Study Area: E28

#### Acres in Study Area:144.8 Acres with Oysters: 4.4

Oyster Area: Location:

a: Pensacola Bay System Escambia Bay Escambia

Sample Date: 7/29/2021

| County: | Escambia               |                 |          |          |
|---------|------------------------|-----------------|----------|----------|
|         | CL                     | JLTCH/MATERIALS | PRESENT  |          |
|         | rr                     |                 |          |          |
|         | Material               | Sample 1        | Sample 2 | Sample 3 |
|         | Crush Concrete         | 0               | 0        | 0        |
|         | Limestone              | 0               | 0        | 0        |
|         | Oyster Shell Cultch    | Х               | Х        | Х        |
|         | Oyster Shell Fragments | Х               | Х        | Х        |
|         | Oyster Shell Rubble    | Х               | Х        | Х        |
|         | Oyster Clusters        | 0               | 0        | 0        |
|         | Oyster Singles         | Х               | Х        | Х        |
|         | Broken Oyster Shells   | 0               | 0        | 0        |
|         | Clam Shells            | Х               | Х        | Х        |
|         | Marsh Debris           | 0               | 0        | 0        |
|         | H2S Odor               | 0               | 0        | 0        |

#### **OYSTER REEF ORGANISMS - PRESENT**

| Species        | Sample 1 | Sample 2 | Sample 3 |
|----------------|----------|----------|----------|
| Barnacles      | Х        | Х        | Х        |
| Brittle Stars  | 0        | 0        | 0        |
| Sea Squirts    | 0        | 0        | 0        |
| Slipper Shells | 0        | 0        | 0        |
| Bryozoan       | 0        | 0        | 0        |

| Material      | Sample 1    | Sample 2 | Sample 3 |
|---------------|-------------|----------|----------|
| Oyster Drills | 0           | 0        | 0        |
| Hermit Crabs  | 0           | 0        | 0        |
| Mud Crabs     | 1           | 0        | 0        |
| Mussels       | 3           | 5        | 6        |
| Rangia        | 0           | 0        | 0        |
| Material      | Total Count |          |          |
| Oyster Drills | 0           |          |          |
| Hermit Crabs  | 0           |          |          |
| Mud Crabs     | 1           |          |          |
| Mussels       | 14          |          |          |
| Rangia        | 0           |          |          |

#### OYSTER SHELL COLOR

| Sample 1    |     |  |  |  |  |  |
|-------------|-----|--|--|--|--|--|
| Shell Color | %   |  |  |  |  |  |
| Brown-Green | 0   |  |  |  |  |  |
| Brown       | 0   |  |  |  |  |  |
| Black       | 0   |  |  |  |  |  |
| Gray        | 100 |  |  |  |  |  |

SAMPLE 1

Brown-Green Brown

Gray

Black

# Sample 2

| Shell Color | %   |
|-------------|-----|
| Brown-Green | 0   |
| Brown       | 0   |
| Black       | 0   |
| Gray        | 100 |



| Sample 3 |  |
|----------|--|
| %        |  |
| 0        |  |
| 5        |  |
| 0        |  |
| 95       |  |
|          |  |


| OYSTER DENSITIES                     |                                                  |                                                  |                   |             |                                                    |                     |      |                 |
|--------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------|-------------|----------------------------------------------------|---------------------|------|-----------------|
| Study Area: E28                      |                                                  |                                                  |                   |             | Acres in Study: 144<br>Acres with Oyster Reef: 4.4 |                     |      | 144.8<br>4.4    |
| Oyster Area:<br>Location:<br>County: | Pensacola Bay System<br>Escambia Bay<br>Escambia |                                                  |                   |             | Sample Date: 7/29/2021                             |                     |      |                 |
|                                      | Oysters in Sample                                |                                                  |                   |             | Sacks Per Acre                                     |                     |      |                 |
| Sample #                             | <24mm                                            | 25-74 >75mm                                      |                   | All sizes   | Discounted for Mortalities                         |                     |      | Total           |
| •                                    | spat                                             | seed                                             | sack              | 180oys/sack | spat(10%)                                          | seed(50%)           | sack | 1               |
|                                      |                                                  |                                                  |                   | -           |                                                    |                     |      |                 |
| 1                                    | 4                                                | 0                                                | 0                 | 90          | 9                                                  | 0                   | 0    | 9               |
| 2                                    | 1                                                | 0                                                | 0                 | 22          | 2                                                  | 0                   | 0    | 2               |
| 3                                    | 0                                                | 1                                                | 0                 | 22          | 0                                                  | 11                  | 0    | 11              |
|                                      |                                                  |                                                  |                   |             |                                                    |                     |      |                 |
| TOTAL                                | 5                                                | 1                                                | 0                 | 135         | 11                                                 | 11                  | 0    | 22              |
|                                      |                                                  |                                                  |                   |             |                                                    |                     |      |                 |
| AVERAGE                              | 1.7                                              | 0.3                                              | 0.0               | 45.0        | 3.7                                                | 3.7                 | 0.0  | 7.5             |
|                                      |                                                  |                                                  |                   |             |                                                    |                     |      | •               |
|                                      |                                                  | E                                                | STIMATED P        | OTENTIAL ST | ANDING CRC                                         | )P                  |      |                 |
| Average Sacks Per Acre               |                                                  | No. of Acres Holding Oysters                     |                   |             | Estimated No. of Potential<br>Sacks in Study Area  |                     |      |                 |
| 7                                    |                                                  | x                                                | 4.4               |             | =                                                  | 33                  |      |                 |
| from square<br>meter samples         |                                                  | determined from poling/side<br>scan sonar survey |                   |             |                                                    |                     |      |                 |
|                                      |                                                  |                                                  |                   |             |                                                    |                     |      |                 |
|                                      |                                                  | S                                                | QUARE MET         | ER SAMPLE I | MORTALITIE                                         | S                   |      |                 |
|                                      | •                                                |                                                  |                   |             |                                                    |                     |      |                 |
| Sample #                             |                                                  | # Live Oysters                                   | # Recent<br>Boxes | # Old Boxes |                                                    | Recent<br>Mortality |      | Total Mortality |
| 1                                    |                                                  | 4                                                | 0                 | 12          |                                                    | 0%                  |      | 75%             |
| 2                                    | I                                                | 1                                                | 0                 | 19          |                                                    | 0%                  |      | 95%             |
| 3                                    |                                                  | 1                                                | 1                 | 13          |                                                    | 50%                 |      | 93%             |
|                                      | -                                                | · ·                                              |                   |             |                                                    | -                   |      | -               |
| Tatal                                | 0                                                |                                                  | 4                 | 4.4         |                                                    | Recent              |      | Total           |
| iotai                                | 6                                                | 0                                                | 1                 | 44          |                                                    | Mortality           |      | Mortality       |
| Average                              |                                                  | 2.0                                              | 0.3               | 14.7        |                                                    | 16.7%               |      | 88%             |

## GULF COAST OYSTER REEF ORGANISM FIELD GUIDE

## BIVALVES

#### Eastern Oyster, (Crassostrea virginica)



• **Description:** the eastern oyster is often cemented to rocks or other shells, with a grey or white exterior. The interior is white with a darkly colored muscle scar. Spat only have one visible valve and are dark grey-purple in color.

• **Habitat:** these oysters are found along the Gulf of Mexico and Atlantic coasts, this ranges from Mexico all the way to Canada. The oyster larvae will attach themselves to submerged objects in order to develop into spat, and later on become juvenile

oysters. Oysters create a physical habitat for many other marine organisms by creating hard surfaces, such as oyster reefs. As filter feeders, oysters can improve water quality and clarity providing us with an important ecosystem service.







#### Hooked Mussel, (Ischadium recurvum)

• **Description:** the hooked mussel is brown or dark grey in color with ribs radiating from the beak/hinge outwards. The interior shell is a shiny with a purple, pink or brown color. The mussels itself is triangular in shape and hooks towards one side.

• **Habitat:** it is native to the Gulf of Mexico and north of the Chesapeake Bay. These organisms will attach themselves to submerged objects, such as forming large groups on oysters. These filter feeders can help improve water quality.



#### Rangia (Rangia sp.)

- **Description:** the rangia are ribbed with a brown exterior and a glossy white interior.
- **Habitat:** these bivalves are found I areas with low salinities, particularly estuarine habitats.



## BRYOZOANS



## TUNICATES

#### Encrusting Bryozoan, (Conopeum sp.)

• **Description:** encrusting bryozoans pertaining to this particular genus, have calcified walls between individuals, which are rectangular or oval in shape. They will either have a brown or orange color depending on their diet.

• **Habitat:** these organisms can be found across a broad range of salinities and occur on hard substrates, such as oyster reefs.



### Sea Squirts, (Molgula manhattensis)

Description: tunicates are soft bodied marine invertebrates, this species in particular is often lees than 1 inch in size.
Habitat: these soft bodied invertebrates are native to the Gulf of Mexico. They are restricted to higher salinities and grow on hard substrates.

## BARNACLES



### Barnacle, (Amphibalanus sp.)

• **Description:** barnacles are sessile crustaceans with plated calcium carbonate domes.

• **Habitat:** they can be found in marine environments on hard substrates.

## CRUSTACEANS

#### Striped Hermit Crab (Clibanarius Vittatus)

• **Description:** hermit crabs are invertebrates with soft abdomen and use salvaged empty shells to support and protect their body.



• Habitat: these organisms inhabit a wide range of habitats from land to shallow waters.



#### Flat-back mud crab (Eurypanopeus depressus)

Description: this small crab is o bigger than half an inch in width. The carapace is a molted dark brown and it has unequal claw sizes with a white tip. Spines can be found on the edge of the carapace.
Habitat: these organisms often inhabit oyster reefs.

#### Oyster shell mud crab (Panopeus simpsoni)

• **Description:** this crab is similar to flat-back mud crab but can be larger in size. There is a large tooth on their top claw, which is moveable.



• Habitat: these organisms often inhabit oyster reefs.

#### **OPHIURIDA**



#### Brittle Star (Ophiothrix fragilis)

• **Description:** brittle stars have 5-6 long, slender arms which radiate from a central disk. Unlike starfish, brittle stars use their arms for locomotion.

• **Habitat:** These organisms can be found in all the world's oceans, as well as intertidal zones. Salinity may vary from tropical ocean waters, to brackish waters.

## MOLLUSCA

#### **Oyster Drills** (Urosalpinx cinerea)

- **Description:** as the name indicates, this snail drills a hole in the oyster shell in order to access the soft tissue inside which they feed on.
- **Habitat:** this snail is endemic to the Atlantic. They can be found in shallow areas and depths of up to 25ft.



## Slipper Shells (Crepidula fornicate)

- **Description:** this marine snail can be found in oval or egg-shaped shells that look as though they are cut in half.
- **Habitat:** these organisms can be found in a wide variety of habitats, such as, intertidal zones, marshes and beaches.



# **Glossary of Acronyms**

- DO Dissolved Oxygen
- FWC Florida Fish and Wildlife Conservation Commission
- FDEP Florida Department of Environmental Protection
- GIS Geographic Information System
- HSM Habitat Suitability Model
- MREC Marine Research Ecological Consulting Environmental, LLC
- NOAA National Oceanic and Atmospheric Administration
- NRDA Natural Resource Damage Assessment
- OIMMP Oyster Integrated Mapping and Monitoring Program
- PBS Pensacola Bay System
- POI Points of Interest
- PPBEP Pensacola and Perdido Bays Estuary Program

RESTORE – Resources and Ecosystems Sustainability, Tourist Opportunities, and Revived Economies of the Gulf Coast States

- SQM Square Meter Quadrant
- TNC The Nature Conservancy
- USDA United States Department of Agriculture

# <u>REFERENCES</u>

Baggett et al., Oyster Habitat Restoration Monitoring and Assessment Handbook. 2014.

Beck et al., Oyster Reefs at Risk and Recommendations for Conservation, Restoration, and Management. *BioScience*, Vol. 61, No. 2. February, 2011.

"Field Guide – Marine Community & Ecosystem Resilience." *Marine Community Ecosystem Resilience*, WordPress, https://jurgenslab.com/field-guide/.

Mann and Evans, Site Selection for Oyster Habitat Rehabilitation in the Virginia Portion of the Chesapeake Bay: A Commentary. *Journal of Shellfish Research*, Vol. 23, No. 1. 2004.

Starke et al., Restoration of *Crassostrea virginica* to the Hudson River, USA: A Spatiotemporal Modeling Approach. *Journal of Shellfish Research*, Vol. 30, No. 3. 2011

Birch et al., Oyster Fisheries and Habitat Management Plan for the Pensacola Bay System. May, 2021.

USDA, Eastern Oyster (*Crassostrea virginica*) Habitat suitability: A Subaqueous Soil Interpretation. Natural Resources Conservation Service. April, 2018.